This paper is concerned with the distributed generalized Nash equilibrium (GNE) tracking problem of noncooperative games in dynamic environments, where the cost function and/or the coupled constraint function are time-varying and revealed to each agent after it makes a decision. We first consider the case without coupled constraints and propose a distributed inertial online game (D-IOG) algorithm based on the mirror descent method. The proposed algorithm is capable of tracking Nash equilibrium (NE) through a time-varying communication graph and has the potential of achieving a low average regret.
View Article and Find Full Text PDFAn ideal binder for high-energy-density lithium-ion batteries (LIBs) should effectively inhibit volume effects, exhibit specific functional properties (e.g., self-repair capabilities and high ionic conductivity), and require low-cost, environmentally friendly mass production processes.
View Article and Find Full Text PDF