Publications by authors named "Haomiao Chang"

Heat stress negatively affects lactation performance and rumen microbiota of dairy cows, with different breeds showing varying levels of heat tolerance. This study aimed to compare the lactation performance of Montbéliarde × Holstein (MH, = 13) and Holstein (H, = 13) cows under heat stress, and 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) were used to determine the rumen microbiome and metabolome in experimental cows. The results indicated that during heat stress, milk yield ( = 0.

View Article and Find Full Text PDF

Holstein cattle are the main breed of dairy cattle in China. However, given the high degree of purebred selection of Holstein cattle, Chinese dairy cattle are increasingly being characterized by poor disease resistance, poor quality, and declining fertility. In this study, using Montbéliard × Holstein cattle as females and Montbéliard bulls as males for backcross breeding, we sought to provide a reference for improving the quality and performance of Holstein cattle and enhancing the efficiency of dairy farming.

View Article and Find Full Text PDF

Heat stress is becoming the major factor regarding dairy cow health and milk quality because of global warming. Circular RNAs (circRNAs) represent a special type of noncoding RNAs, which are related to regulating many biological processes. Nonetheless, little is known concerning their effects on heat-stressed bovine mammary epithelial cells (BMECs).

View Article and Find Full Text PDF

Holstein cattle are well known for their high average milk yield but are more susceptible to disease and have lower fecundity than other breeds of cattle. The purpose of this study was to explore the relationship between ruminal metabolites and both milk performance and ruminal microbiota composition as a means of assessing the benefits of crossbreeding Montbéliarde and Holstein cattle. This experiment crossbred Holstein with Montbéliarde cattle, aimed to act as a reference for producing high-quality dairy products and improving the overall efficiency of dairy cattle breeding.

View Article and Find Full Text PDF

Heat stress (HS) is directly correlated to mammary gland dysfunction in dairy cows, especially in summer. The hypothalamic-pituitary-mammary gland axis (HPM axis) plays an important role in the regulation of stress response and lactation physiology in heat-stressed dairy cows. The aim of this study was to explore the lncRNA profile, and the competitive endogenous RNA (ceRNA) regulatory network in hypothalamus, pituitary, and mammary gland tissues of heat-stressed and normal dairy cows.

View Article and Find Full Text PDF