Background: The whitefly Bemisia tabaci is a notorious agricultural pest known for its ability to cause significant crop damage through direct feeding and virus transmission. Its remarkable adaptability and reproductive capacity are linked to its ability to acquire and integrate horizontally transferred genes (HTGs) into its genome. These HTGs increase the physiological and metabolic capacities of this pest, including cholesterol synthesis, which is critical for its survival and reproductive success.
View Article and Find Full Text PDFHypochlorous acid (HOCl) is considered a temporary reservoir of dichlorine monoxide (ClO). Previous studies have suggested that ClO is difficult to generate from the reaction of HOCl + HOCl in the gas phase. Here, we demonstrate that ClO can be generated from the HOCl + HOCl reaction at aqueous/frozen air-water interfaces, which is confirmed by ab initio molecular dynamic calculations.
View Article and Find Full Text PDFIn most organisms, various physiological and behavioral functions are expressed rhythmically. Previous studies have shown that thermoperiod is an important factor affecting circadian clock-related genes that regulate insect locomotor activity. Bradysia odoriphaga Yang & Zhang is an underground pest that attacks more than 30 crops but is especially damaging to Chinese chives.
View Article and Find Full Text PDFPlants protect themselves with a vast array of toxic secondary metabolites, yet most plants serve as food for insects. The evolutionary processes that allow herbivorous insects to resist plant defenses remain largely unknown. The whitefly Bemisia tabaci is a cosmopolitan, highly polyphagous agricultural pest that vectors several serious plant pathogenic viruses and is an excellent model to probe the molecular mechanisms involved in overcoming plant defenses.
View Article and Find Full Text PDFBradysia odoriphaga is frequently subjected to heat shock during the summer in China. Although the effects of heat shock on insect ecology and physiology have been widely explored, the effects of heat shock on the life history parameters of Bradysia odoriphaga are largely unknown. In the present study, we investigated the effects of heat shock on B.
View Article and Find Full Text PDF