Microporous polymer membranes are promising candidates for industrial membrane-based gas separation because of their high separation performance. However, their relatively low stability due to the local rearrangement of polymer chains during usage remains a problem. Hence, we propose the construction of a fully aromatic polymer structure in a microporous polymer membrane to enhance membrane stability.
View Article and Find Full Text PDFIn this paper, we report the design, synthesis, and characterization of a series of hyper-cross-linked polymers of intrinsic microporosity (PIMs), with high CO uptake and good CO/N and CO/CH selectivity, which makes them competitive for carbon capture and biogas upgrading. The starting hydrocarbon polymers' backbones were functionalized with groups such as -NO, -NH, and -HSO, with the aim of tuning their adsorption selectivity toward CO over nitrogen and methane. This led to a significant improvement in the performance in the potential separation of these gases.
View Article and Find Full Text PDFBackground: Neonatal hypoxic-ischemic encephalopathy (HIE) refers to the perinatal asphyxia caused by the cerebral hypoxic-ischemic injury. The current study was aimed at investigating the therapeutic efficacy of Scutellarin (Scu) administration on neurological impairments induced by hypoxic-ischemic injury and exploring the underlying mechanisms.
Methods: Primary cortical neurons were cultured and subjected to oxygen-glucose deprivation (OGD), and then treated with Scu administration.
It has been reported that Neonatal hypoxic-ischemic encephalopathy (HIE) could induce apoptosis in neonates and result in cognitive and sensory impairments, which are associated with poor developmental outcomes. Despite the improvement in neonatology, there is still no clinically effective treatment for HIE presently. Long non-coding RNAs (lncRNAs) play important roles in cellular homeostasis.
View Article and Find Full Text PDFInterleukin 10 (IL-10) is a synthetic inhibitor of human cytokines with immunomodulatory and anti-inflammatory effects. This study was designed to investigate the expression variation of IL-10 in the multiple sites including cortex, hippocampus, and lung tissues of neonatal hypoxic-ischemic (HI) rats and explore the crucial role of IL-10 in alleviating HI brain damage. In this study, neonatal Sprague-Dawley rats were subjected to the right common carotid artery ligation, followed by 2 h of hypoxia.
View Article and Find Full Text PDFNeonatal hypoxic ischemic encephalopathy (HIE) due to birth asphyxia is common and causes severe neurological deficits, without any effective therapies currently available. Neuronal death is an important driving factors of neurological disorders after HIE, but the regulatory mechanisms are still uncertain. Long non-coding RNA (lncRNA) or ceRNA network act as a significant regulator in neuroregeneration and neuronal apoptosis, thus owning a great potential as therapeutic targets in HIE.
View Article and Find Full Text PDFThe treatment of VOCs (volatile organic compounds) in waste streams is very important. Herein, we propose to use a network microporous polyimide (PI) membrane for the molecular sieving of nitrogen over VOC molecules to control their emission. 2,6,14-triaminotriptycene (Trip) was reacted with aromatic dianhydride monomers, such as 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), to synthesize ultramicroporous polyimides, which readily form composite membranes via solution coating.
View Article and Find Full Text PDFNeonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of lifelong disabilities worldwide, without effective therapies and clear regulatory mechanisms. MicroRNAs (miRNAs) act as a significant regulator in neuroregeneration and neuronal apoptosis, thus holding great potential as therapeutic targets in HIE. In this study, we established the hypoxia-ischemia (HI) model in vivo and oxygen-glucose deprivation (OGD) model in vitro.
View Article and Find Full Text PDFSingle-nucleotide polymorphism (SNP) and Alternative splicing (AS) were found to be implicated in certain diseases, nevertheless, the contributions of mRNA SNPs and AS to pathogenesis in developing rat brains with hypoxic-ischemic encephalopathy (HIE) remained largely vague. Additionally, the disease associated with Tacr3 was normosmic congenital hypogonadotropic hypogonadism, while the relationship between HIE and Tacr3 remained largely elusive. The current study was designed to investigate the differentially expressed mRNAs and related SNPs as well as AS in neonatal rats subjected to HIE to identify if the exhibition of AS was associated with SNPs under pathological condition.
View Article and Find Full Text PDFMembranes (Basel)
December 2018
Microporous polymer membranes have been widely studied because of their excellent separation performance. Among them, polymers of intrinsic micro-porosity (PIMs) have been regarded as a potential next-generation membrane material for their ultra-permeable characteristics and their solution-processing ability. Therefore, many reviews have been reported on gas separation and monomers for the preparation of PIMs.
View Article and Find Full Text PDFMicroporous polymer membranes continue to receive tremendous attention for energy-efficient gas separation processes owing to their high separation performances. A new network microporous polyamide membrane with good molecular-sieving performance for the separation of N from a volatile organic compound (VOC) mixture is described. Triple-substituted triptycene was used as the main monomer to form a fisherman's net-shaped polymer, which readily forms a composite membrane by solution casting.
View Article and Find Full Text PDFThis study detected the effects of endogenous neurotrophin-3 (NT-3) on the collateral sprouting derived from the L6 dorsal root ganglion (DRG) after unilateral removal of adjacent DRGs (L1–L5 and L7) in cats. Cholera toxin B tracing revealed significant neurite growth from the spared L6 DRG and axonal sprouting in the dorsal column. There was a significant increase in the number of NT-3 and trkC immunopositive neurons as well as in NT-3 protein level in the spared DRG by immunohistochemistry and enzyme-linked immunoadsorbent assay.
View Article and Find Full Text PDFSpatiotemporal changes of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in the spinal cords of chick embryonic stage day 7 (E7) and day 14 (E14) were examined by using immunohistochemistry and Western blot. Intensive NGF immunoreaction (IR) was detected in the white matter of the spinal cords, while BDNF-IR in perikaryon and neurite, and NT-3-IR in the nucleus and cytoplasm were seen in the neurons of the ventral horn in the gray matter. Comparatively, the expressions for three growth factors have expanded largely into the dorsal horn at E14, and the level of proteins for these growth factors increased significantly in the spinal cords from E7 to E14.
View Article and Find Full Text PDFIt is well known that fibroblasts can act as a cell vector to express functional protein, like neurotrophin-4 (NT-4). The present study evaluated the effect of NT-4 gene modified fibroblasts grafted into the hippocampus of AD rat model. AD rats were reproduced by bilateral transection of the hippocampal fimbria-fornix.
View Article and Find Full Text PDFNeuroplasticity occurs in the spinal cord in response to lesions, but less is known about the underlying mechanism. This investigation explored the role of intrinsic NGF in axonal sprouting of dorsal root ganglia (DRG) in cats subjected to unilateral removal of L1-L5, L7-S2 DRG, but leaving the L6 DRG (spared DRG) undamaged. The expression of mRNA and protein for NGF and TrkA increased significantly by using in situ hybridization histochemistry and immunohistochemistry.
View Article and Find Full Text PDFLimited information is available regarding the role of endogenous Glial cell line-derived neurotrophic factor (GDNF) in the spinal cord following transection injury. The present study investigated the possible role of GDNF in injured spinal cords following transection injury (T(9)-T(10)) in adult rats. The locomotor function recovery of animals by the BBB (Basso, Beattie, Bresnahan) scale score showed that hindlimb support and stepping function increased gradually from 7 days post operation (dpo) to 21 dpo.
View Article and Find Full Text PDFIt is well known that plasticity occurs in deafferented spinal cord, and that electro-acupuncture (EA) could promote functional restoration. The underlying mechanism is, however, unknown. Ciliary neurotrophic factor (CNTF) plays a crucial role in neurite outgrowth and neuronal survival both in vivo and in vitro, and its expression might explain some of the mechanism.
View Article and Find Full Text PDFThis study evaluated the therapeutic effect of neural stem cells (NSCs) transplanted into Parkinson's disease (PD) rats. NSCs were identified in vitro, then engrafted into the striatum of the PD rats. The rotational behavior was evaluated 1, 2, 4 and 6 weeks.
View Article and Find Full Text PDF