Publications by authors named "Haokun Luo"

We propose a method for guiding charged particles such as electrons and protons, in vacuum, by employing the exotic properties of Lagrange points. This leap is made possible by the dynamics unfolding around these equilibrium points, which stably capture such particles, akin to the way Trojan asteroids are held in Jupiter's orbit. Unlike traditional methodologies that allow for either focusing or three-dimensional storage of charged particles, the proposed scheme can guide both non-relativistic and relativistic electrons and protons in small cross-sectional areas in an invariant fashion over long distances without any appreciable loss in energy - in a manner analogous to photon transport in optical fibers.

View Article and Find Full Text PDF

Despite its massive potential, Raman imaging represents just a modest fraction of all research and clinical microscopy to date. This is due to the ultralow Raman scattering cross-sections of most biomolecules that impose low-light or photon-sparse conditions. Bioimaging under such conditions is suboptimal, as it either results in ultralow frame rates or requires increased levels of irradiance.

View Article and Find Full Text PDF

We develop a general methodology capable of analyzing the response of Weyl semimetal (WSM) photogalvanic networks. Both single-port and multiport configurations are investigated via extended versions of Norton's theorem. An equivalent circuit model is provided where the photogalvanic currents induced in these gapless topological materials can be treated as polarization-dependent sources.

View Article and Find Full Text PDF