Surface-chemistry of individual, optically trapped plasmonic nanoparticles is modified and accelerated by plasmonic overheating. Depending on the optical trapping power, gold nanorods can exhibit red shifts of their plasmon resonance (i.e.
View Article and Find Full Text PDFWe present a versatile and controlled route to immobilize gold nanoparticles (NPs) on the surface of living cells, while preserving the sensing and optothermal capabilities of the original colloid. Our approach is based on the controlled and selective binding of Au NPs to phospholipids prior to cell incubation. We show that in the presence of the cells the lipid-bound Au NPs are delivered to the cellular membrane and that their diffusion is rather slow and spatially limited, as a result of lipid binding.
View Article and Find Full Text PDF