Silicosis is a fatal occupational pulmonary disease that is characterized by irreversible replacement of lung parenchyma by aberrant Exracellular matrix (ECM). Metabolic reprogramming is a crucial mechanism for fibrosis. However, how the metabolic rewiring shifts the ECM homeostasis toward overaccumulation remains unclear.
View Article and Find Full Text PDFSilicosis is a disease caused by prolonged exposure to silica dust. It is the most typical, rapidly progressive, and fatal form of pneumoconiosis. Currently, there is no specific medication available for the treatment of silicosis.
View Article and Find Full Text PDFAs a fatal occupational disease with limited therapeutic options, molecular mechanisms underpinning silicosis are still undefined. Herein, single-cell RNA sequencing of the lung tissue of silicosis mice identified two monocyte subsets, which were characterized by Cxcl10 and Mmp14 and enriched in fibrotic mouse lungs. Both Cxcl10 and Mmp14 monocyte subsets exhibited activation of inflammatory marker genes and positive regulation of cytokine production.
View Article and Find Full Text PDFSilicosis is a global occupational pulmonary disease due to the accumulation of silica dust in the lung. Lacking effective clinical drugs makes the treatment of this disease quite challenging in clinics largely because the pathogenic mechanisms remain obscure. Interleukin 33 (IL33), a pleiotropic cytokine, could promote wound healing and tissue repair via the receptor ST2.
View Article and Find Full Text PDFBackground: Pulmonary fibrosis is a chronic progressive fibrotic interstitial lung disease characterized by excessive extracellular matrix (ECM) deposition caused by activated fibroblasts. Increasing evidence shows that matrix stiffness is essential in promoting fibroblast activation and profibrotic changes. Here, we investigated the expression and function of matrix stiffness-regulated ZNF416 in pulmonary fibrotic lung fibroblasts.
View Article and Find Full Text PDFPulmonary fibrosis is a chronic and progressive interstitial lung disease associated with the decay of pulmonary function, which leads to a fatal outcome. As an essential epigenetic regulator of DNA methylation, the involvement of ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) in fibroblast activation remains largely undefined in pulmonary fibrosis. In the present study, we found that TGF-β1-mediated upregulation of UHRF1 repressed beclin 1 via methylated induction of its promoter, which finally resulted in fibroblast activation and lung fibrosis both in vitro and in vivo.
View Article and Find Full Text PDF