Fluorinated graphene (FG) among numerous two-dimensional materials has enormous potential in improving antifriction properties. However, they being susceptible to thermal oxidation and prone to wear hinder practical applications. Herein, UIO-66-NH (Zr-MOF) enjoying good chemical and thermal stabilities was assembled on the surface of FG nanosheets under covalent bonds and van der Waals forces.
View Article and Find Full Text PDFCarbohydr Polym
January 2025
Cellulose, one of nature's most abundant, clean, and sustainable resources, has often shown unsatisfactory results when used as bio-lubricant additives. Herein, nanocellulose (NC) from amorphous waste natural poplar was extracted using deep eutectic solvent encapsulation treatment and chlorine bleaching process. Subsequently, 1-hexadecyl-3-methylimidazolium bromide was integrated onto NC using a one-step hydrothermal treatment (high-temperature and high-pressure environment) to obtain ionic liquid crystal (ILC) functionalized products (named as ILC-NC).
View Article and Find Full Text PDFPolymer-matrix composites have been widely used in the manufacture of seals, bearings, electrical insulators, and self-lubricating films as engineering applications move toward lighter weight, higher strength, and corrosion resistance. However, the high-speed shear effect of the friction pairs in relative motion leads to localized heating of the polymer surface, resulting in deformation or softening of the device. Herein, acer mono maple and canna leaves were used as templates to construct polymer-matrix sulfonated polyether-etherketone/polytetrafluoro-wax (SPEEK/PFW) composites with a surface-textured structure.
View Article and Find Full Text PDFInterfacial solar desalination is a method for desalinating seawater using solar energy, and the long-term use of this technology requires a stable evaporation rate and some ability to prevent salt crystallization. To address these issues, carbonized polydopamine-coated bentonite (C@PBT), poly(vinyl alcohol), and cellulose nanofibers were used to construct a three-dimensional oriented hydrogel evaporator with a multilayered honeycomb porous structure for long-term desalination. Carbon nanoparticles transferred between the layers of the bentonite, which increases the spacing of the layers and confers a more effective solar light trapping ability.
View Article and Find Full Text PDFPassive daytime radiative cooling (PDRC) as a zero-energy-consumption cooling technique offers rich opportunities in reducing global energy consumption and mitigating CO emissions. Developing high-performance PDRC coolers with practical applicability based on sustainable materials is of great significance, but remains a big challenge. Herein, polyvinyl alcohol (PVA) and esterified cellulose (EC) extracted from sawdust were used as raw materials to construct foams by using a dual-crosslinking assisted-unidirectional freeze-drying strategy followed by hydrophobic surface modification.
View Article and Find Full Text PDFRecently, materials with superlubricity captured widespread attention on account of their great potential in energy savings and environmental protection. However, certain issues still remain to be solved for the traditional materials, such as the dependence on strict conditions and an unstable superlubricity state. Herein, a long-term stable superlubricity coating was prepared using a low-cost and simple method via an epoxy-based coating with polydimethylsiloxane (PDMS) brushes under silicone oil (SO) lubrication conditions.
View Article and Find Full Text PDFIn the present study, we successfully developed an efficient thiocyanation of carbonyl compounds by using low-toxicity and inexpensive ammonium thiocyanate as the thiocyanate source under visible light in air (O) at room temperature. This unified strategy is very facile for thiocyanation of various carbonyl compound derivatives (β-keto esters, β-keto amides, pyrazo-5-ones, isoxazol-5-ones, etc.).
View Article and Find Full Text PDFThe development of high-energy-density Li-S batteries (LSBs) is still hindered by the disturbing polysulfide shuttle effect. Herein, with clever combination between "high entropy" and MXene, an HE-MXene doped graphene composite containing multiple element quasi-atoms as bifunctional mediator for separator modification (HE-MXene/G@PP) in LSBs is proposed. The HE-MXene/G@PP offers high electrical conductivity for fast lithium polysulfide (LiPS) redox conversion kinetics, abundant metal active sites for efficient chemisorption with LiPSs, and strong lipophilic characteristics for uniform Li deposition on lithium metal surface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Salt deposition and pollutant enrichment greatly hamper efficient and sustainable water production for a solar evaporator. Inspired by the desert beetle, a dual-region hydrophobic graphene/hydrophilic titanium dioxide (TiO) aerogel (GTA) with internal hydrophilic-hydrophobic hybrid wettability structure is prepared via a facile freeze-drying and thermal reduction method. The evaporator shows adjustable wettability, optimized water content, and a low energy loss in the evaporation process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2024
Hydrogels with excellent mechanical flexibility are widely used in flexible electronic devices. However, it is difficult to meet further applications of high-power integrated flexible electronics as a result of their low thermal conductivity. Herein, highly thermally conductive composite hydrogels with a solid-liquid interpenetrating thermal conductivity network are constructed by aromatic polyamide nanofibers (ANF) and fluorinated graphene (FG) reinforced poly(vinyl alcohol) (PVA) and cross-linked by tannic acid (TA) solution immersion to obtain a hydrogel with a double cross-linked network.
View Article and Find Full Text PDFThe development of Li-free anodes to inhibit Li dendrite formation and provide high energy density Li batteries is highly applauded. However, the lithiophobic interphase and heterogeneous Li deposition hindered the practical application. In this work, a 20 nm ultra-sleek high entropy alloy (HEA, NiCdCuInZn) tights loaded with HEA nanoparticles are developed by a thermodynamically driven phase transition method on the carbon fiber (HEA/C).
View Article and Find Full Text PDFThe rapid charge recombination, low selectivity for two-electron oxygen reduction reaction (ORR), and limited O diffusion rate hinder the practical applications of photocatalytic H O generation. Herein, a triphase photocatalytic system in which the H O generation occurs at the air-liquid-solid joint interfaces is developed, using polymeric carbon nitride (PCN). The introduction of pyrrole units and cyano group into PCN can promote the activation of oxygen molecules and facilitate the spatial separation of HOMO and LUMO orbits, hence improving the charge carrier separation efficiency and enhancing the formation of H O .
View Article and Find Full Text PDFPurpose: This study explored the J-shaped effect of compulsory citizenship behavior on counterproductive work behavior of new generation employees, as well as the separate and joint moderating effects of trust and felt trust on the J-shaped relationship between compulsory citizenship behavior and counterproductive work behavior.
Methods: Three waves of data were collected from 659 new generation employees in China. A self-report method was used to measure compulsory citizenship behavior, counterproductive work behavior, trust and felt trust.
Purpose: Based on ego depletion theory and interaction ritual theory, this research explores the impact of compulsory citizenship behavior on new-generation knowledge workers' job performance via the mediating role of ego depletion and the moderating role of relational energy employees experienced in interactions with coworkers.
Methods: Two studies were conducted to explore the impact of compulsory citizenship behavior on job performance. Study 1 used a 10-day daily diary Survey (N=112) and Study 2 used a questionnaire survey conducted multiple times (N=356) to test the hypotheses.
With the rapid development of miniaturization and high-power portable electronics, the accumulation of undesired heat can degrade the performance of electronic devices and even cause fires. Therefore, multifunctional thermal interface materials that combine high thermal conductivity and flame retardancy remain a challenge. Herein, an ILC (ionic liquids crystal)-armored boron nitride nanosheet (BNNS) with flame retardant functional groups was first developed.
View Article and Find Full Text PDFObjective: To build a clinical-radiomics model based on noncontrast computed tomography images to identify the risk of hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT).
Materials And Methods: A total of 517 consecutive patients with AIS were screened for inclusion. Datasets from six hospitals were randomly divided into a training cohort and an internal cohort with an 8:2 ratio.
Nitrogen-doped lubricating additives have been proved to be an effective strategy to improve the tribological properties of lubricating oil. However, the traditional preparation methods of nitrogen-doped lubricating additives have the defects including harsh preparation conditions and a time-consuming preparation process. Herein, we report a preparation method of nitrogen-doped carbon dot (NCD) lubricating additives in a short time by one-step aldehyde condensation reaction at room temperature.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2023
Recently, smart windows have attracted widespread attention on account of their unique features, yet traditional smart windows still rely on external energy support to accomplish dynamic reversible switching, which not only confines usage but also causes waste of energy. For this purpose, we have prepared hemiaminal dynamic covalent network (HDCN) film with outstanding flexibility and strength by a simple and low-cost method, in which the modulus is 206.28 MPa and the elongation at break is 39.
View Article and Find Full Text PDFAs competition grows, when employees are required to accelerate innovation, they also face increasing time pressure. In order to shed light on how time pressure affects employees' innovation performance, two studies were conducted to examine the effect of time pressure on innovation performance. In Study 1, based on 50 effect sizes from 50 independent samples ( = 15,751) in 40 articles, a meta-analysis was conducted to examine the J-shaped effect of time pressure on innovation performance.
View Article and Find Full Text PDFHemorrhagic complication (HC) is the most severe complication of intravenous thrombolysis (IVT) in patients with acute ischemic stroke (AIS). This study aimed to build a machine learning (ML) prediction model and an application system for a personalized analysis of the risk of HC in patients undergoing IVT therapy. We included patients from Chongqing, Hainan and other centers, including Computed Tomography (CT) images, demographics, and other data, before the occurrence of HC.
View Article and Find Full Text PDFThree-dimensional (3D) elastic aerogels enable diverse applications but are usually restricted by their low thermal and electrical transfer efficiency. Here, we demonstrate a strategy for fabricating the highly thermally and electrically conductive aerogels using hybrid carbon/ceramic structural units made of hexagonal boron nitride nanoribbons (BNNRs) with in situ-grown orthogonally structured graphene (OSG). High-aspect-ratio BNNRs are first interconnected into a 3D elastic and thermally conductive skeleton, in which the horizontal graphene layers of OSG provide additional hyperchannels for electron and phonon conduction, and the vertical graphene sheets of OSG greatly improve surface roughness and charge polarization ability of the entire skeleton.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2022
Solar energy-facilitated materials are promising to solve energy problems by converting clean solar energy to thermal energy. However, heat loss of photothermal materials still limits the photothermal conversion phenomenon. Herein, we designed bio-inspired hollow carbon microtubes (HCMTs) by one-step carbonization of renewable cotton fibers, which can avoid the complex preparation procedures of the template method.
View Article and Find Full Text PDFBecause of the high synthesis cost, strong chemical inertness, complex process, and easy to endanger environment of traditional carbon-based nanolubricant additives, the development of its application in lubrication is limited. Therefore, a new type of lubricant additive with low cost, high yield, high performance, and environmental protection is urgently needed. Herein, a kilogram-scale carbon dots (CDs) lubricant additive was prepared by a simple and green one-step reaction of aldol condensation, which showed excellent lubricating properties in water and sunflower oil.
View Article and Find Full Text PDFDesign and fabrication of structurally optimized three-dimensional porous materials are highly desirable for engineering applications. Herein, through a facile bidirectional freezing technique, we prepared superelastic biomass sponges in air and underwater, which possess biomimetic porous sandwich-like architectures with lamellar layers interconnected by porous microstructures, similar to the structure of rice stems. This distinctive architecture was obtained by incorporating Typha orientalis fibers (TOFs) and graphene oxide (GO) nanosheets into sodium alginate (SA) matrix, in which SA flakes and GO nanosheets were intimately grown along TOFs.
View Article and Find Full Text PDF