Our understanding of the nervous tissues that affect the wing flapping of insects mainly focuses on the brain, but wing flapping is a rhythmic movement related to the central pattern generator in the ventral nerve cord. To verify whether the neural activity of the abdominal ganglion of the honeybee (Apis mellifera) affects the flapping-wing flight, we profiled the response characteristics of indirect flight muscles to abdominal ganglion excitation. Strikingly, a change in the neural activity of ganglion 3 or ganglion 4 has a stronger effect on the electrophysiological activity of indirect flight muscles than that of ganglion 5.
View Article and Find Full Text PDFThe efficient removal of persistent organic pollutants (POPs) in natural waters is vital for human survival and sustainable development. Photocatalytic degradation is a feasible and cost-effective strategy to completely disintegrate POPs at room temperature. Herein, we develop a series of direct Z-scheme BiOIO/AgIO hybrid photocatalysts via a facile deposition-precipitation method.
View Article and Find Full Text PDFJ Insect Sci
September 2022
Many kinds of locomotion abilities of insects-including flight control, spatial orientation memory, position memory, angle information integration, and polarized light guidance are considered to be related to the central complex. However, evidence was still not sufficient to support those conclusions from the aspect of neural basis. For the locomotion form of wing flapping, little is known about the patterns of changes in brain activity of the central complex during movement.
View Article and Find Full Text PDFConstructing direct Z-scheme system is a promising strategy to boost the photocatalytic performance for pollution waters restoration, but it is of great challenge because of the requirement of appropriately staggered energy band alignment and intimate interfacial interaction between semiconductors. Herein, a class of core-shell structured AgS-AgIO Z-scheme heterostructure photocatalysts are designed and developed. AgS is generated by the in-situ ion exchange reaction and anchored on the surface of AgIO, so the intimate interface between AgIO and AgS is realized.
View Article and Find Full Text PDFBrain Behav
December 2021
Introduction: Insect cyborg is a kind of novel robot based on insect-machine interface and principles of neurobiology. The key idea is to stimulate live insects by specific stimuli; thus, the flight trajectory of insects could be controlled as anticipated. However, the neuroregulatory mechanism of insect flight has not been elucidated completely at present.
View Article and Find Full Text PDF