Publications by authors named "Haohao Ren"

Water-based lubricants have the advantages of low cost, easy cleaning, and environmental friendliness, and are suitable for various lubrication applications. However, the limited tribological properties of pure water-based lubricants restrict their use. To improve these properties, water-based lubrication additives can be employed.

View Article and Find Full Text PDF

Herein, we present a straightforward CuBr-mediated surface-initiated controlled radical polymerization (SI-CRP) method for fabricating polymer brushes using microliter volumes of reaction solution in air and at room temperature. The key advantage of this method is its ability to rapidly grow polymer brushes with oxygen tolerance, driven by the controlled disproportionation of Cu into Cu and Cu by CuBr and ligand. We demonstrate the successful preparation of homo-, block, patterned, and wafer-scale polymer brushes.

View Article and Find Full Text PDF

Biodegradable polymer microspheres in bone tissue engineering have become appealing as their non-invasive advantages in irregular damage bone repair. However, current microspheres used in BTE still lack sufficient osteogenic capacity to induce effective bone regeneration. In this study, we developed osteogenic composite microspheres concurrently loaded with magnesium oxide (MgO) and zinc oxide (ZnO), both of which are osteogenic active substances, using a facile and scalable emulsification method.

View Article and Find Full Text PDF

Stopping postoperative soft tissue adhesions is one of the most challenging clinical problems that needs to be addressed urgently to avoid secondary injury and pain to patients. Currently, membrane materials with anti-protein adsorption and antibacterial activity are recognized as an effective and promising anti-adhesion barrier to prevent postoperative adhesion and the recurrent adhesion after adhesiolysis. Herein, poly(amino acid) (PAA), which is structurally similar to collagen, is selected as the membrane base material to successfully synthesize PAA-5 membranes with excellent mechanical and degradation properties by in-situ melt polymerization and hot-melt film-forming technology.

View Article and Find Full Text PDF

Structural engineering is an appealing means to modulate osteogenesis without the intervention of exogenous cells or therapeutic agents. In this work, a novel 3D scaffold with anisotropic micropores and nanotopographical patterns is developed. Scaffolds with oriented pores are fabricated via the selective extraction of water-soluble polyethylene oxide from its poly(ε-caprolactone) co-continuous mixture and uniaxial stretching.

View Article and Find Full Text PDF

In an investigation of diseases from plant-parasitizing nematodes in Henan Province, a cyst nematode was found on tobacco roots and in rhizosphere soil. We identified this strain as a new cyst nematode subspecies, sbsp.n.

View Article and Find Full Text PDF

Maize is the largest crop planted in China. Nine species of cyst nematodes have been reported to affect maize production. Heterodera zeae, H.

View Article and Find Full Text PDF

Heterodera avenae, H. filipjevi, and H. laptipons are considered to be the major cyst nematode pathogens affecting most cereals and causing severe crop losses (Smiley and Yan 2015).

View Article and Find Full Text PDF

Adenosine triphosphate (ATP), acting as a source of energy, has effects on cellular activities, such as adhesion, proliferation, and differentiation. In this study, ATP-loaded calcium sulfate hemihydrate/calcium citrate tetrahydrate cement (ATP/CSH/CCT) was successfully prepared for the first time. The effect of different contents of ATP on the structure and physicochemical properties of ATP/CSH/CCT was also studied in detail.

View Article and Find Full Text PDF

Osteoporosis is a growing public health concern worldwide. To avoid extra surgeries, developing biodegradable bone cement is critical for the treatment of osteoporosis. Herein, we designed calcium phosphate/calcium sulfate cement reinforced with sodium carboxymethyl cellulose (CMC/OPC).

View Article and Find Full Text PDF

Poly-amino acid (PAA) is a promising biomaterial in biomedical engineering due to its similar amide bond structure to collagen and excellent biocompatibility, but the lack of osteogenic activity and inferior mechanical strength limit its long-term application in orthopedics. In this study, a poly-amino acid/poly (p-benzamide) (PAA-PBA) copolymer with high mechanical strength was designed and fabricated by the method of solution polymerization. The chain structures, thermal properties and mechanical properties of these polymers were evaluated and results showed that PBA greatly promoted the mechanical properties of PAA, and the copolymer performed the maximum mechanical strengths with compressive strength, bending strength and tensile strength of 123 MPa, 107 MPa and, 95 MPa, respectively.

View Article and Find Full Text PDF

Aphelenchoides besseyi is one of the important plant-parasitic nematodes on rice, reducing approximate 10-20% of the rice yield annually (Jones et al. 2013). Foxtail millet (Setaria italica) has been a major cereal crop in Northern China, especially in the semi-arid areas of this region, for thousands of years.

View Article and Find Full Text PDF

Xenogeneic bone has good biological activity, but eliminating immunogenicity, while retaining osteogenic abilities, is a challenge. By combining xenogeneic bone with poly amino acid (PAA) that has an amide bond structure, a new type of composite conforming to bionics and low immunogenicity may be obtained. In this study, according to the principles of component bionics, three composites of delipidized cancellous bone powder (DCBP) and PAA were designed and obtained by anpolycondensation method, an extrusion molding (EM) method, and a solution-blend method.

View Article and Find Full Text PDF

In this work, a modified dicalcium phosphate dihydrate (DCPD) bone cement with unique biodegradable ability in a calcium phosphate cement system was prepared by the hydration reaction of monocalcium phosphate monohydrate and calcium oxide and integration with pullulan (Pul), a non-toxic, biocompatible, viscous, and water-soluble polysaccharide that has been successfully used to improve defects in DCPD bone cement, especially its rapid solidification, fragile mechanical properties, and easy collapse. The effect of different contents of Pul on the structure and properties of DCPD were also studied in detail. The modified cement was characterised by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, ultraviolet-visible absorption, X-ray photoelectron spectroscopy analysis, and rheological property measurements.

View Article and Find Full Text PDF

In this work, novel magnesium calcium phosphate/sodium alginate composite cements were successfully fabricated with a proper setting time (5-24 min) and high compressive strength (91.1 MPa). The physicochemical and biological properties of the cement in vitro were fully characterized.

View Article and Find Full Text PDF

Three of the cereal cyst nematodes, Heterodera avenae, H. filipjevi and H. latipons are considered to be the most economically important cyst nematodes that affect cultivated cereals around the world.

View Article and Find Full Text PDF

Large numbers of research works related to fabricating organic-inorganic composite materials have been carried out to mimic the natural structure of bone. In this study, a new modified n-ACP doped with citrate (n-ACP-cit)/poly (amino acids) (PAA) composite (n-ACP-cit/PAA) was synthesized by employing high bioactive n-ACP-cit and the biodegradable and biocompatible PAA copolymer. Its basic structure was characterized by X-ray diffraction spectroscopy, Fourier transformed infrared spectroscopy, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

and are cereal cyst nematodes (CCNs) that infect cereals in 16 provinces of China. CCN populations from Xuchang, Tangyin, Qihe, and Juye were tested using 23 barley, oat, and wheat entries of the International Test Assortment for Defining Cereal Cyst Nematode Pathotypes. populations from Tangyin, Qihe, and Juye were classified as pathotype Ha91, and from Xuchang was classified as a new pathotype similar to pathotype West.

View Article and Find Full Text PDF

From June 2018 to November 2019, a survey for cyst-forming nematodes was conducted in rice fields in Henan Province of central China. Cysts were recovered from two rice fields (N32° 14' 048″8 and E115° 4' 008″) at Huangchuan County, leading to more intensive sampling. A further 25 soil samples were then collected with a valve bag from each of these two locations.

View Article and Find Full Text PDF

Hydroxyapatite/poly(amino acid) (HA/PAA) has been used to treat a variety of long bone and vertebral bony defects, and a further biocompatibility improvement is a key for better application. Phosphoester (PE) contained materials are highly biocompatible but could hardly treat massive bone defects due to its fast-degradation-derived mechanical instability. To address the problems of the two materials, we have incorporated PE molecule into the main chain of PAA by chemical bonding.

View Article and Find Full Text PDF

Many studies about fabricating organic-inorganic composite materials have been carried out in order to mimic the natural structure of bone. Pearl, which has a special block-and-mortar hierarchical structure, is a superior bone repair material with high osteogenic activity, but it shows few applications in the clinical bone repair and reconstruction because of its brittle and uneasily shaped properties. In this work, pearl powder (P)/poly (amino acid) (PAA) composites were successfully prepared by a method of in situ melting polycondensation to combine the high osteogenic activity of the pearl and the pliability of the PAA.

View Article and Find Full Text PDF

A ternary composite of poly(amino acid), hydroxyapatite, and calcium sulfate (PAA/HA/CS) was prepared using in situ melting polycondensation method and evaluated in terms of mechanical strengths, in vitro degradability, bioactivity, as well as in vitro and in vivo biocompatibility. The results showed that the ternary composite exhibited a compressive strength of 147 MPa, a bending strength of 121 MPa, a tensile strength of 122 MPa, and a tensile modulus of 4.6 GPa.

View Article and Find Full Text PDF

The compressive strength of the original bone tissue was tested, based on the raw human thigh bone, bovine bone, pig bone and goat bone. The four different bone-like apatites were prepared by calcining the raw bones at 800 degrees C for 8 hours to remove organic components. The comparison of composition and structure of bone-like apatite from different bone sources was carried out with a composition and structure test.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: