Reconfigurable and multifunctional metasurfaces are becoming indispensable in a variety of applications due to their capability to execute diverse functions across various states. However, many of these metasurfaces incorporate complex active components, thereby escalating structural complexity and bulk volume. In this research, we propose a reconfigurable passive hologram based solely on an origami structure, enabling the successful generation of holograms depicting the 'Z' and 'L' illuminated by a right-hand circular polarization (RHCP) wave in two distinct states: planar and zigzag configuration, respectively.
View Article and Find Full Text PDFHolography has garnered an explosion of interest in tremendous applications, owing to its capability of storing amplitude and phase of light and reconstructing the full-wave information of targets. Spatial light modulators, metalenses, metasurfaces, and other devices have been explored to achieve holographic images. However, the required phase distributions for conventional holograms are generally calculated using the Gerchberg-Saxton algorithm, and the iteration is time-consuming without Fourier transform or other acceleration techniques.
View Article and Find Full Text PDFAn approach to producing the orbital angular momentum (OAM) based on spoof localized surface plasmons (spoof LSPs) in microwave frequencies is demonstrated both theoretically and experimentally. The fundamental and high-order modes of spoof LSPs occur when a textured metallic surface is excited with a microstrip line. Two orthogonal modes of spoof LSPs with +90° or -90° phase retardation are superimposed, resulting in a OAM-vortex mode.
View Article and Find Full Text PDFMetasurface antennas (MAs) have been proposed as innovative alternatives to conventional bulky configurations for satellite applications because of their low profile, low cost, and high gain. The general method of surface impedance modulation for designing MAs is complicated, and achieving broad operation bandwidth remains a challenge because of its high dispersion response. We propose a novel and easy technique to control cylindrical surface waves radiated by a phase-tuning metasurface.
View Article and Find Full Text PDFThe loss and back-coupling effects on the subwavelength imaging of three-dimensional superlens are reported in this paper. The loss is added in the image region of a superlens. The back-coupling effects are considered by adding a shielded layer above the object region.
View Article and Find Full Text PDFIn this Letter we investigate the subwavelength imaging of a three-dimensional plasmon superlens based on the full vector wave simulations of optical wave propagation and transmission. The optical transfer functions are computed. Comparisons are made between the results of lenses with flat and periodic/random rough surfaces.
View Article and Find Full Text PDF