In this article, AlSi10Mg aluminum alloy was used as the substrate to prepare aluminum alloy/diamond composite materials with laser cladding technology. The effects of the composition and laser power on the microstructure and thermal properties of the composite materials were studied. The results show that the prefabrication of tungsten carbide layer on the diamond surface enhances the wettability of diamond with aluminum alloy and reduces the laser reflection, which ensures the implementability of laser cladding technology for the preparation of aluminum alloy/diamond composites.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
For graphene/copper (Gr/Cu) composites, achieving high-quality interfaces between Gr and Cu (strong interfacial bonding strength and excellent electron transport performance) is crucial for enabling their widespread applications in electronic devices. This study employs first-principles calculations and the nonequilibrium Green's function method to systematically investigate the mechanical and electrical conductivity properties of Cu(111)/Gr/Cu(111) interfaces with various stacking sequences and different forms of Gr. For these interface systems, the binding energy, separation work, charge transfer, and electrical conductivity across the interface were obtained.
View Article and Find Full Text PDFThermal deformation behavior of Cu-Cr-Sn alloy ingots under deformation temperatures ranging from 600 °C to 950 °C and strain rates from 0.01 s to 10 s was investigated in detail. The thermal deformation constitutive equation and thermal processing map of the alloy were established, respectively.
View Article and Find Full Text PDFTo study the effect of aluminum and nickel elements on the microstructures and properties of the nickel-aluminum bronze (NAB) alloy, four kinds of alloys with different compositions, ZCuAl7-7-4-2, ZCuAl8-6-4-2, ZCuAl9-5-4-2, and ZCuAl10-4-4-2, are prepared by vacuum-melting technology. The effects of different Al/Ni ratios on the microstructures of NAB are investigated using a metalloscope, scanning electron microscopy, transmission electron microscopy, and XPS analysis. The mechanical property is evaluated with microhardness testing and tensile mechanical testing.
View Article and Find Full Text PDFThe interface microzone characteristics determine the thermophysical properties of diamond/Cu composites, while the mechanisms of interface formation and heat transport still need to be revealed. Here, diamond/Cu-B composites with different boron content were prepared by vacuum pressure infiltration. Diamond/Cu-B composites up to 694 W/(mK) were obtained.
View Article and Find Full Text PDFMaterials (Basel)
February 2023
This paper investigates the changes in the interface organization and properties of 0.10 mm Pd/Al composite wires annealed at different temperatures. The optimum comprehensive performance of the material was obtained after annealing at 300 °C for 120 s.
View Article and Find Full Text PDFThe relationship between microstructure evolution and properties of a Cu-Cr-Sn alloy during aging and high-temperature softening was investigated in detail in the present work. The results show that the addition of Sn refines obviously the size of the Cr phase and enhances the thermal stability of the alloy, which improves the peak-aged hardness of the Cu-Cr-Sn alloy reaching 139 HV after aging at 450 °C for 240 min. In addition, the recrystallization behavior of the Cu-Cr alloy with the 0.
View Article and Find Full Text PDFMaterials (Basel)
November 2022
Cu-Ti alloys were strengthened by β'-CuTi metastable precipitation during aging. With the extension of the aging time, the β'-CuTi metastable phase transformed into the equilibrium β-CuTi phase. The Cu-3.
View Article and Find Full Text PDFUnlabelled: This study focused on the effects of Zn and Ni addition on the antibacterial properties and corrosion resistance of copper alloys. The antimicrobial properties of copper and copper alloys were evaluated using bacterial strain by employing the overlay and plate counting methods. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface composition of the alloy after contact with bacteria.
View Article and Find Full Text PDFAs it is known, beryllium bronze, an important copper alloy, is widely used in the field of aerospace. Since the performance of domestic and imported beryllium bronze alloys have obvious differences, domestic beryllium bronze QBe2.0 and imported C17200 alloy were adopted, and the hardness and tensile properties of imported and domestic beryllium bronze alloys in the peak aging state were compared and analyzed.
View Article and Find Full Text PDFThe properties and microstructure evolution of quaternary Cu-Ni-Co-Si alloys with different Ni/Co mass ratios were investigated. The microstructure and morphological characteristics of the precipitates were analyzed by using electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The mechanical properties and conductivity of the alloys were significantly improved after the addition of Co.
View Article and Find Full Text PDFMaterials (Basel)
November 2020
Cu-Cr-based alloys exhibit excellent electrical conductivity and strength, but their poor thermal stability limits their application in industry. In this paper, Cu-0.2Cr (at.
View Article and Find Full Text PDFThe size (grain size and specimen size) effect makes traditional macroscopic forming technology unsuitable for a microscopic forming process. In order to investigate the size effect on mechanical properties and deformation behavior, pure copper wires (diameters range from 50 μm to 500 μm) were annealed at different temperatures to obtain different grain sizes. The results show that a decrease in wire diameter leads to a reduction in tensile strength, and this change is pronounced for large grains.
View Article and Find Full Text PDFThe fracture-behaviors of two Ti-Al-Sn-Zr-Mo-Nb-W-Si alloys with different slow-diffusing β stabilizing elements (Mo, W) were investigated through in-situ tensile testing at 650 °C via scanning electron microscopy. These alloys have two phases: the α phase with hcp-structure (a = 0.295 nm, c = 0.
View Article and Find Full Text PDFMaterials (Basel)
February 2020
The microstructure evolution and properties of a Cu-Cr-Ag alloy during continuous extrusion and an aging process were studied by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). Owing to strong shear deformation that happened during continuous extrusion with working temperatures of 450 to 480 °C, a larger number of fine grains were obtained. Both face-centered cubic (FCC) and body-centered cubic (BCC) precipitates simultaneously existed in the matrix when aged for 450 °C for 2 h, and the Cr phases with BCC structure had an N-W relationship with the matrix.
View Article and Find Full Text PDFThe properties and microstructural evolution of quaternary Cu-Ni-Co-Si alloys with different Ni/Co mass ratios are investigated systematically. These alloys exhibit higher mechanical properties when the Ni/Co mass ratio is 1.12-1.
View Article and Find Full Text PDFThe effect of the Ni/Si mass ratio and combined thermomechanical treatment on the microstructure and properties of ternary Cu-Ni-Si alloys is discussed systematically. The Cu-Ni-Si alloy with a Ni/Si mass ratio of 4-5 showed good comprehensive properties. Precipitates with disc-like shapes were confirmed as the NiSi phase with orthorhombic structure through transmission electron microscopy, high-resolution transmission electron microscopy, and 3D atom probe characterization.
View Article and Find Full Text PDF