Publications by authors named "Haofeng Ji"

Anaerobic methane oxidation (AOM) can drive soil arsenate reduction, a process known as methane-dependent arsenate reduction (M-AsR), which is a critical driver of arsenic (As) release in soil. Low molecular weight organic acids (LMWOAs), an important component of rice root exudates, have an unclear influence and mechanism on the M-AsR process. To narrow this knowledge gap, three typical LMWOAs-citric acid, oxalic acid, and acetic acid-were selected and added to As-contaminated paddy soils, followed by the injection of CH and incubation under anaerobic conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Organ ischemia reperfusion injury (IRI) poses significant challenges in liver transplantation, leading to acute liver cell death, but autophagy helps restore cell function after stress.
  • In a study using a mouse model for liver transplantation, treatment with pituitary adenylate cyclase-activating polypeptide (PACAP) substantially improved liver graft survival from 41.7% to 91.7% by enhancing autophagy and reducing cellular damage.
  • The research highlights the role of PACAP in activating specific cell signaling pathways (like CREB and KLF4) that boost autophagy, suggesting potential therapeutic strategies for treating liver injury during transplantation.
View Article and Find Full Text PDF

Background: Hepatic ischemia-reperfusion injury (IRI) is a severe complication in liver transplantation, hepatectomy, and hemorrhagic shock. As neuropeptides transmit the regulatory signal between nervous and immune systems communication, our previous study documented that pituitary adenylate cyclase-activating polypeptides (PACAP) depressed hepatic Toll-like receptor 4 immune response in liver IRI.

Methods: Here, we focused on how PACAP suppressed hepatocellular damage and enhanced hepatocyte regeneration in a murine model of partial liver warm IRI.

View Article and Find Full Text PDF

Background & Aims: Hepatic ischemia-reperfusion injury (IRI) is a major complication of hemorrhagic shock, liver resection and transplantation. YAP, a key downstream effector of the Hippo pathway, is essential for determining cell fate and maintaining homeostasis in the liver. We aimed to elucidate its role in IRI.

View Article and Find Full Text PDF

Objective: To determine whether vertical sleeve gastrectomy (VSG) attenuates fibrosis in mice on a high-fat high-cholesterol (HFHC) diet.

Background: Bariatric surgery mitigates non-alcoholic steatohepatitis in 85-90% of obese patients. While animal models demonstrate similar results on a high-fat diet, none have observed the effects of bariatric surgery on a combined HFHC diet.

View Article and Find Full Text PDF

Background: Liver ischemia and reperfusion injury (IRI) is a major complication of liver transplant, hepatectomy, and hemorrhagic shock. The cyclin-dependent kinase 2 (CDK2) acts as a pivotal regulator of cell cycle and proliferation.

Methods: This study evaluated the modulation and therapeutic potential of CDK2 inhibition in a mouse model of partial liver warm IRI.

View Article and Find Full Text PDF
Article Synopsis
  • Ischemia-reperfusion injury (IRI) in the liver can lead to complications after surgery, but ischemic preconditioning (IPC) may protect against this damage by inhibiting TIM-4 activation in macrophages.
  • In a study with mice, researchers induced liver ischemia for 90 minutes followed by 6 hours of reperfusion, comparing outcomes with or without IPC and using TIM-4 blocking antibodies.
  • Results showed that IPC reduced liver injury markers, apoptosis, and TIM-4 expression, indicating that targeting TIM-4 could be a new strategy for reducing liver IRI during surgeries.
View Article and Find Full Text PDF

Ischemic preconditioning (IPC) has been introduced to protect grafts against ischemic reperfusion injury (IRI) during liver transplantation (LT) in recent years. However, the underlying molecular mechanisms of IPC are not fully understood. We aimed to confirm whether the efficacy of IPC is dependent on T cell Immunoglobulin and Mucin domain-containing molecules-1 (TIM-1).

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI), an innate immunity-driven local inflammation, remains the major problem in clinical organ transplantation. T cell immunoglobulin and mucin domain (TIM-3)-Galectin-9 (Gal-9) signaling regulates CD4+ Th1 immune responses. Here, we explored TIM-3-Gal-9 function in a clinically relevant murine model of hepatic cold storage and orthotopic liver transplantation (OLT).

View Article and Find Full Text PDF

Background & Aims: By binding to T cell immunoglobulin mucin-3 (TIM-3) on activated Th1 cells, galectin-9 (Gal-9) negatively regulates Th1-type alloimmunity. Although T cells contribute to hepatic ischemia-reperfusion injury (IRI), it is unknown whether negative T cell-dependent TIM-3 co-stimulation may rescue IR-stressed orthotopic liver transplants from innate immunity-driven inflammation.

Methods: We used wild type (WT) and TIM-3 transgenic (Tg) mice (C57BL/6) as liver donors and recipients in a clinically-relevant model of hepatic cold storage (20 h at 4°C in UW solution) and syngeneic orthotopic liver transplantation (OLT).

View Article and Find Full Text PDF

Unlabelled: Hepatic ischemia-reperfusion injury (IRI), an innate immunity-driven inflammation response, occurs in multiple clinical settings including liver resection, transplantation, trauma, and shock. T-cell immunoglobulin and mucin (TIM)-4, the only TIM protein not expressed on T cells, is found on macrophages and dendritic cells. The regulatory function of macrophage TIM-4 in the engulfment of apoptotic/necrotic bodies in innate immunity-mediated disease states remains unknown.

View Article and Find Full Text PDF

Background & Aims: The Keap1-Nrf2 signaling pathway regulates host cell defense responses against oxidative stress and maintains the cellular redox balance.

Methods: We investigated the function/molecular mechanisms by which Keap1-Nrf2 complex may influence liver ischemia/reperfusion injury (IRI) in a mouse model of hepatic cold storage (20h at 4°C) followed by orthotopic liver transplantation (OLT).

Results: The Keap1 hepatocyte-specific knockout (HKO) in the donor liver ameliorated post-transplant IRI, evidenced by improved hepatocellular function and OLT outcomes (Keap1 HKO→Keap1 HKO; 100% survival), as compared with controls (WT→WT; 50% survival; p<0.

View Article and Find Full Text PDF

Hepatic ischemia/reperfusion injury (IRI), an exogenous, antigen-independent, local inflammation response, occurs in multiple clinical settings, including liver transplantation, hepatic resection, trauma, and shock. The nervous system maintains extensive crosstalk with the immune system through neuropeptide and peptide hormone networks. This study examined the function and therapeutic potential of the vasoactive intestinal peptide (VIP) neuropeptide in a murine model of liver warm ischemia (90 minutes) followed by reperfusion.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are critical mediators of immune responses that integrate signals from the innate immune system to orchestrate adaptive host immunity. This study was designed to investigate the role and molecular mechanisms of STAT3-induced β-catenin in the regulation of DC function and inflammatory responses in vitro and in vivo. STAT3 induction in lipopolysaccharide (LPS)-stimulated mouse bone marrow-derived DCs (BMDCs) triggered β-catenin activation by way of GSK-3β phosphorylation.

View Article and Find Full Text PDF

Unlabelled: Hepatic ischemia and reperfusion injury (IRI), an exogenous antigen-independent local inflammation response, occurs in multiple clinical settings, including liver transplantation, hepatic resection, trauma, and shock. The immune system and the nervous system maintain extensive communication and mount a variety of integrated responses to danger signals through intricate chemical messengers. This study examined the function and potential therapeutic potential of neuropeptide pituitary adenylate cyclase-activating polypeptides (PACAP) in a murine model of partial liver "warm" ischemia (90 minutes) followed by reperfusion.

View Article and Find Full Text PDF

Hepatic ischemia/reperfusion injury (IRI) occurs in multiple clinical settings, including liver transplantation. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway inhibits hepatocellular apoptosis and regulates toll-like receptor 4-triggered inflammation responses in vitro. Here we examined the function and therapeutic potential of cAMP-PKA activation in a murine (C57/BL6) model of liver warm ischemia (90 minutes) followed by reperfusion.

View Article and Find Full Text PDF

Background & Aims: Signal transducer and activator of transcription 3 (STAT3), a key mediator of anti-inflammatory cytokine signaling, is essential for heme oxygenase-1 (HO-1)-induced cytoprotection. The phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog delete on chromosome 10 (PTEN) pathways regulate diverse innate immune responses. This study was designed to investigate the role of STAT3 in the regulation of PI3K/PTEN cascade after HO-1 induction in a mouse model of innate immune-dominated liver ischemia/reperfusion injury (IRI).

View Article and Find Full Text PDF

Background: The sensitized patients can develop an accelerated form of graft rejection mediated by humoral and T-cell-mediated responses, which are resistant to currently used immunosuppression.

Methods And Results: In our model of fulminant cardiac allograft rejection in sensitized hosts, groups of wild-type (WT) and B-cell-deficient (BKO) mice (B6) were challenged with skin grafts (B/c). Alloreactive CD8 T effector (Teff) activation and T memory (Tmem) differentiation during a 60-day follow-up period were reduced in the absence of B-cell help.

View Article and Find Full Text PDF

We investigated whether native macrophages overexpressing heme oxygenase 1 (HO-1) could protect rat orthotopic liver transplant (OLT) against cold ischemia/reperfusion injury (IRI). Livers from Sprague-Dawley rats were stored at 4°C in University of Wisconsin solution for 24 hours, and then they were transplanted into syngeneic recipients. Bone marrow-derived macrophages (BMMs) that were transfected ex vivo with heme oxygenase 1 adenovirus (Ad-HO-1), β-galactosidase adenovirus (Ad-β-gal), or HO-1 small interfering RNA (siRNA) were infused directly into the OLT before reperfusion.

View Article and Find Full Text PDF

Unlabelled: Programmed death-1 (PD-1)/B7-H1 costimulation acts as a negative regulator of host alloimmune responses. Although CD4 T cells mediate innate immunity-dominated ischemia and reperfusion injury (IRI) in the liver, the underlying mechanisms remain to be elucidated. This study focused on the role of PD-1/B7-H1 negative signaling in liver IRI.

View Article and Find Full Text PDF

The T cell immunoglobulin and mucin domain-containing molecules (TIM) protein family, which is expressed by T cells, plays a crucial role in regulating host adaptive immunity and tolerance. However, its role in local inflammation, such as innate immunity-dominated organ ischemia-reperfusion injury (IRI), remains unknown. Liver IRI occurs frequently after major hepatic resection or liver transplantation.

View Article and Find Full Text PDF

Macrophages play a critical role in the pathophysiology of liver ischemia and reperfusion (IR) injury (IRI). However, macrophages that overexpress antioxidant heme oxygenase-1 (HO-1) may exert profound anti-inflammatory functions. This study explores the cytoprotective effects and mechanisms of ex vivo modified HO-1-expressing bone marrow-derived macrophages (BMDMs) in well-defined mouse model of liver warm ischemia followed by reperfusion.

View Article and Find Full Text PDF

We have shown that overexpression of heme oxygenase-1 (HO-1) prevents the liver inflammation response leading to ischemia and reperfusion injury (IRI). This study was designed to explore the precise function and mechanism of HO-1 cytoprotection in liver IRI by employing a small interfering RNA (siRNA) that effectively suppresses HO-1 expression both in vitro and in vivo. Using a partial lobar liver warm ischemia model, mice were injected with HO-1 siRNA/nonspecific control siRNA or Ad-HO-1/Ad-beta-gal.

View Article and Find Full Text PDF