Publications by authors named "Haodong Qiu"

On-chip twisted light emitters are essential components of orbital angular momentum (OAM) communication devices. These devices address the growing demand for high-capacity communication systems by providing an additional degree of freedom for wavelength/frequency division multiplexing (WDM/FDM). Although whispering-gallery-mode-enabled OAM emitters have been shown to possess some advantages, such as compactness and phase accuracy, their inherent narrow bandwidths prevent them from being compatible with WDM/FDM techniques.

View Article and Find Full Text PDF

The integration of efficient, miniaturized group IV lasers into CMOS architecture holds the key to the realization of fully functional photonic-integrated circuits. Despite several years of progress, however, all group IV lasers reported to date exhibit impractically high thresholds owing to their unfavourable bandstructures. Highly strained germanium with its fundamentally altered bandstructure has emerged as a potential low-threshold gain medium, but there has yet to be a successful demonstration of lasing from this seemingly promising material system.

View Article and Find Full Text PDF

Compact all-pass and add-drop microring resonators (radius=10  μm) integrated with grating couplers working at 2 μm wavelength are designed, fabricated, and characterized on a commercial 340-nm-thick-top-silicon silicon-on-insulator platform. They are suitable for high-volume integrated optical circuits at 2 μm wavelength as the fabrication process involved are uncomplicated and complementary metal-oxide-semiconductor (CMOS)-process compatible, thus making them more convenient to be utilized. The performance of the grating couplers, based on four most important parameters, has been simulated and optimized.

View Article and Find Full Text PDF

Engineering the surrounding electromagnetic environment of light emitters by photonic engineering, e.g. photonic crystal cavity, can dramatically enhance its spontaneous emission rate through the Purcell effect.

View Article and Find Full Text PDF

Based on restricted interferences mechanism in a 1x2 MMI beam splitter, we theoretically investigate and experimentally demonstrate an ultra-compact MMI-based demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm. The device is fabricated on 340 nm SOI platform, with a footprint of 293x6 μm.

View Article and Find Full Text PDF

An all-pass microring-Bragg gratings (APMR-BG) based coupling resonant system is proposed and experimentally demonstrated to generate electromagnetically induced transparency (EIT)-like transmission for the first time. The coupling between two light path ways in the micro-ring resonator and the Fabry-Pérot (F-P) resonator formed by two sections of Bragg gratings gives rise to the EIT-like spectrum. This system has the advantage of a small footprint consisting of only one microring resonator and one bus waveguide with Bragg gratings.

View Article and Find Full Text PDF