Publications by authors named "Haodan Xu"

A confined environment is a special kind of extreme working environment, and prolonged exposure to it tends to increase psychological stress and trigger rhythmic disorders, emotional abnormalities and other phenomena, thus seriously affecting work efficiency. However, the mechanisms through which confined environments affect human health remain unclear. Therefore, this study simulates a strictly controlled confined environment and employs integrative multi-omics techniques to analyze the alterations in gut microbiota and metabolites of workers under such conditions.

View Article and Find Full Text PDF

Under total sleep deprivation, both inhibitory and motor control are impaired. However, how circadian rhythm sleep loss caused by irregular sleep pattern affects motor inhibition and execution in continuous actions remains unknown. This study utilized a pointing task to investigate the question over 30 days.

View Article and Find Full Text PDF

Certain workplaces, like deep-sea voyages, subject workers to chronic psychological stress and circadian rhythm disorders due to confined environments and frequent shifts. In this study, participants lived in a strictly controlled confined environment, and we analyzed the effects of a confined environment on gut microbiota and metabolites. The results showed that living in confined environments can significantly alter both the gut microbiota and the gut metabolome, particularly affecting lipid metabolism pathways like glycerophospholipid metabolism.

View Article and Find Full Text PDF

Iodinated contrast media compounds (ICMs) are intensively applied in medical diagnostic radiology and have received wide environmental concerns due to formation potential of iodinated disinfection byproducts. Conventional water/wastewater treatment processes cannot effectively remove ICMs; reducing their total organic iodine concentration is even more difficult. The source control or elimination of ICMs thus becomes necessary.

View Article and Find Full Text PDF

Shift work is associated with circadian misalignment, which causes sleep loss, impairs performance, and increases the risk of accidents. Shorter, more frequently shifting watch schedules, widely used in industries such as maritime operation, defense, and mining, may mitigate these risks by reducing shift length and providing sleep opportunities for all workers across the biological night. However, the effects of frequently shifting work on sleep and performance still need to be clarified.

View Article and Find Full Text PDF

Trace Cu(II), which inherently exists in soil and some water/wastewater, can trigger persulfate oxidation of some pollutants, but the oxidation capability and mechanism are not well understood, especially toward refractory pollutants. We report in this research that benzothiazole (BTH), a universal refractory pollutant typically originating from tire leachates and various industrial wastewater, can be facilely and selectively removed by peroxydisulfate (PDS) with an equimolar BTH/PDS stoichiometry in the presence of environmental-relevant contents of Cu(II) (below several micromoles). Comprehensive scavenging tests, electron spin resonance analysis, spectroscopy characterization, and electrochemical analysis, revealed that PDS first reduces the BTH-coordinated Cu(II) to Cu(I) and then oxidizes Cu(I) to high-valent Cu(III), which accounts for the BTH degradation.

View Article and Find Full Text PDF

Oxidative modification is a facile method to improve the desalination performance of thin-film composite membranes. In this study, we comparatively investigated the modification mechanisms induced by sulfate radical (SO) and hydroxyl radical (HO) for polyamide reverse osmosis (RO) membrane. The SO- and HO-based membrane modifications were manipulated by simply adjusting the pH of the thermal-activated persulfate solution.

View Article and Find Full Text PDF

Diatrizoate, a refractory ionic iodinated X-ray contrast media (ICM) compound, cannot be efficiently degraded in a complex wastewater matrix even by advanced oxidation processes. We report in this research that a homogeneous process, thiourea dioxide (TDO) coupled with trace Cu(II) (several micromoles, ubiquitous in some wastewater), is effective for reductive deiodination and degradation of diatrizoate at neutral pH values. Specifically, the molar ratio of iodide released to TDO consumed reached 2 under ideal experimental conditions.

View Article and Find Full Text PDF

Synthetic manganese oxides had been widely investigated to activate peroxymonosulfate (PMS) for contaminant removal in recent years. The generation of reactive oxygen species (ROS, e.g.

View Article and Find Full Text PDF

In the past 2 decades, considerable attentions have been paid to the sonochemical advanced oxidation processes (SAOPs) in the fields of pollutants removal. SAOPs are powerful methods for refractory pollutants degradation due to the free radicals (e.g.

View Article and Find Full Text PDF

When applied for the remediation of polluted water/soil, peroxydisulfate (PDS) usually needs to be effectively activated to generate sulfate radical as the working oxidant. However, a significant part of the oxidation capacity of PDS is lost in this way because sulfate radical unselectively reacts with most of the substances in water/soil. PDS activation without generating radicals is preferred to maximize its oxidation capacity for targeted pollutants.

View Article and Find Full Text PDF

Activation of persulfates to degrade refractory organic pollutants is currently a hot topic of advanced oxidation. Developing simple and effective activation approaches is crucial for the practical application of persulfates. We report in this research that trace cupric species (Cu(II) in several μM) can efficiently trigger peroxymonosulfate (PMS) oxidation of various organic pollutants under slightly alkaline conditions.

View Article and Find Full Text PDF

In this paper, the kinetics of bisphenol S (BPS) degradation in the presence of peroxydisulfate (PDS) or dissolved oxygen (DO) in ultrasound (US) system were investigated. For PDS (US/PDS), increased PDS concentration result in faster BPS degradation, but the enhancement was not remarkable with multiplying PDS dosages. Therefore, heterogeneous PDS activation model based on a Langmuir-type adsorption mechanism was proposed to explain the trait of BPS abatement.

View Article and Find Full Text PDF

A light-weight granular mixed-quartz sand (denoted as L-GQS) combined with stirring-assisted bubble column reactor was firstly applied in catalytic ozonation of atrazine. The L-GQS, with a density of 2.36 g cm and average diameter of ca.

View Article and Find Full Text PDF

Novel single-crystal hexagonal MnTiO nanosheets with exposed {0001} facets have been synthesized via a simple one-pot hydrothermal method using NaOH as a mineralizer and tetraethylammonium hydroxide (TEAH) as a morphology controller. The intermediate morphologies of MnTiO nanostructures such as nanoparticles, nanowires, nanorods, and nanodiscs are trapped kinetically by adjusting the synthesis conditions. This approach enables us to elucidate the growth mechanisms of MnTiO nanosheets based on the tetraethylammonium cation adsorption abilities on different MnTiO crystal facets combined with density functional theory calculations.

View Article and Find Full Text PDF

In order to investigate the feasibility of deep denitrification and simultaneous removing phthalate esters (PAEs) in the process of reclaimed water treatment uses three-dimensional biofilm-electrode reactor coupled with sulfur autotrophic deep denitrification technology (3BER-S), the technological characteristics and mechanisms were analyzed based on determining the static adsorption capacity of biofilm cultured active carbon fillers in 3BER-S reactor together with the operation results of dynamic denitrification and simultaneous PAEs removing. The results showed that the average adsorption rates of DBP, DEHP were 85.84% and 97.

View Article and Find Full Text PDF