Self-assembled monolayers (SAM) as hole transport layers have been widely used in high-efficiency inverted perovskite solar cells (PSCs) exceeded 26 %. However, the poor coverage and non-uniform distribution on the substrate of SAM further restrict the improvement of device performance. Herein, we utilize the mixed SAM strategy via the MeO-2PACz along with perfluorotripropylamine (FC-3283) to improve the SAM coverage, aiming to accelerate the carrier transport, promote the perovskite growth, regulate the surface energy levels and suppress the nonradiative recombination.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2023
The interface of perovskite solar cells (PSCs) is significantly important for charge transfer and device stability, while the buried interface with the impact on perovskite film growth has been paid less attention. Herein, we use a molecular modifier, glycocyamine (GDA) to build a molecular bridge on the buried interface of SnO /perovskite, resulting in superior interfacial contact. This is achieved through the strongly interaction between GDA and SnO , which also appreciably modulates the energy level.
View Article and Find Full Text PDFWide-bandgap perovskite solar cells (PSCs) are attracting increasing attention because they play an irreplaceable role in tandem solar cells. Nevertheless, wide-bandgap PSCs suffer large open-circuit voltage (V ) loss and instability due to photoinduced halide segregation, significantly limiting their application. Herein, a bile salt (sodium glycochenodeoxycholate, GCDC, a natural product), is used to construct an ultrathin self-assembled ionic insulating layer firmly coating the perovskite film, which suppresses halide phase separation, reduces V loss, and improves device stability.
View Article and Find Full Text PDFWomen with diabetes mellitus are believed to have increased risk of developing breast cancer and lower life expectancies. This study aims to depict the association between the CISD1, the co-expressed genes, and diabetes mellitus to offer potential therapeutic targets for further mechanical research. The TCGA-BRCA RNAseq data is acquired.
View Article and Find Full Text PDFMetal oxides are the most efficient electron transport layers (ETLs) in perovskite solar cells (PSCs). However, issues related to the bulk (i.e.
View Article and Find Full Text PDFA high-conductivity thiocyanate ionic liquid (EMIMSCN) was introduced into perovskite solar cells for the first time. The high conductivity of EMIMSCN ensures an adequate supply of free SCN anions and EMIM cations, so as to multifunctionally passivate the I vacancy and Pb-I antisite defects and realize an optimized interfacial energy level. Consequently, the devices with EMIMSCN treatment achieve a high PCE of 22.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2022
Defect passivation via post-treatment of perovskite films is an effective method to fabricate high-performance perovskite solar cells (PSCs). However, the passivation durability is still an issue due to the weak and vulnerable bonding between passivating functional groups and perovskite defect sites. Here we propose a cholesterol derivative self-assembly strategy to construct crosslinked and compact membranes throughout perovskite films.
View Article and Find Full Text PDFThe interfaces between the absorber and charge transport layers are shown to be critical for the performance of perovskite solar cells (PSCs). PSCs based on the Spiro-OMeTAD hole transport layers generally suffer from the problems of stability and reproducibility. Inorganic hole transport materials CuCrO have good chemical stability and high hole mobility.
View Article and Find Full Text PDF