Biomimetics (Basel)
November 2023
Pickled mustard tuber (PMT), also known as var. , is a conical tuberous vegetable with a scaly upper part and a coarse fiber skin covering the lower part. Due to its highly distorted and complex heterogeneous fiber network structure, traditional manual labor is still used for peeling and removing fibers from pickled mustard tuber, as there is currently no effective, fully automated method or equipment available.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
Soft wearable sensors are essential components for applications such as motion tracking, human-machine interface, and soft robots. However, most of the reported sensors are either specifically designed to target an individual stimulus or capable of responding to multiple stimuli (e.g.
View Article and Find Full Text PDFHalide perovskites have great potential for use in high-performance light-emitting diodes (LEDs) and displays. Here, a perovskite LEDs (PeLEDs) fabricated directly on an elastomer substrate, in which every single layer in the device from bottom anode to top cathode is patterned solely using a highly scalable inkjet printing process, is reported. Compared to PeLEDs made using conventional microfabrication processes, the printing process significantly shortens the fabrication time by at least tenfold (from over 5 h to less than 25 min).
View Article and Find Full Text PDFAs the initial stage in the formation of human intelligence, the sensory-memory system plays a critical role for human being to perceive, interact, and evolve with the environment. Electronic implementation of such biological sensory-memory system empowers the development of environment-interactive artificial intelligence (AI) that can learn and evolve with diversified external information, which could potentially broaden the application of the AI technology in the field of human-computer interaction. Here, we report a multimodal artificial sensory-memory system consisting of sensors for generating biomimetic visual, auditory, tactile inputs, and flexible carbon nanotube synaptic transistor that possesses synapse-like signal processing and memorizing behaviors.
View Article and Find Full Text PDFA stretchable conductor is one of the key components in soft electronics that allows the seamless integration of electronic devices and sensors on elastic substrates. Its unique advantages of mechanical flexibility and stretchability have enabled a variety of wearable bioelectronic devices that can conformably adapt to curved skin surfaces for long-term health monitoring applications. Here, we report a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based stretchable polymer blend that can be patterned using an inkjet printing process while exhibiting low sheet resistance and accommodating large mechanical deformations.
View Article and Find Full Text PDFThere is an increasing interest in the development of memristive or artificial synaptic devices that emulate the neuronal activities for neuromorphic computing applications. While there have already been many reports on artificial synaptic transistors implemented on rigid substrates, the use of flexible devices could potentially enable an even broader range of applications. In this paper, we report artificial synaptic thin-film transistors built on an ultrathin flexible substrate using high carrier mobility semiconducting single-wall carbon nanotubes.
View Article and Find Full Text PDFSemiconducting single-wall carbon nanotubes (sSWCNTs) have been widely used as the channel material for high-performance printed flexible thin-film transistors (TFTs). Due to the absorption of moisture and oxygen in air, the printed sSWCNT TFTs generally exhibit p-type characteristics only. In this paper, we report fully printed dual-gate sSWCNT TFTs that exhibit almost symmetric ambipolar characteristics.
View Article and Find Full Text PDFSemiconducting single-wall carbon nanotubes are ideal semiconductors for printed electronics due to their advantageous electrical and mechanical properties, intrinsic printability in solution, and desirable stability in air. However, fully printed, large-area, high-performance, and flexible carbon nanotube active-matrix backplanes are still difficult to realize for future displays and sensing applications. Here, we report fully screen-printed active-matrix electrochromic displays employing carbon nanotube thin-film transistors.
View Article and Find Full Text PDFMonolayer WSe2 is a two-dimensional (2D) semiconductor with a direct band gap, and it has been recently explored as a promising material for electronics and optoelectronics. Low field-effect mobility is the main constraint preventing WSe2 from becoming one of the competing channel materials for field-effect transistors (FETs). Recent results have demonstrated that chemical treatments can modify the electrical properties of transition metal dichalcogenides (TMDCs), including MoS2 and WSe2.
View Article and Find Full Text PDF