IEEE Trans Pattern Anal Mach Intell
October 2024
Estimating the rigid transformation with 6 degrees of freedom based on a putative 3D correspondence set is a crucial procedure in point cloud registration. Existing correspondence identification methods usually lead to large outlier ratios (>95% is common), underscoring the significance of robust registration methods. Many researchers turn to parameter search-based strategies (e.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2023
Manhattan and Atlanta worlds hold for the structured scenes with only vertical and horizontal dominant directions (DDs). To describe the scenes with additional sloping DDs, a mixture of independent Manhattan worlds seems plausible, but may lead to unaligned and unrelated DDs. By contrast, we propose a novel structural model called Hong Kong world.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
March 2022
Image lines projected from parallel 3D lines intersect at a common point called the vanishing point (VP). Manhattan world holds for the scenes with three orthogonal VPs. In Manhattan world, given several lines in a calibrated image, we aim to cluster them by three unknown-but-sought VPs.
View Article and Find Full Text PDFIEEE Trans Image Process
May 2020
Estimating the absolute camera pose requires 3D-to-2D correspondences of points and/or lines. However, in practice, these correspondences are inevitably corrupted by outliers, which affects the pose estimation. Existing outlier removal strategies for robust pose estimation have some limitations.
View Article and Find Full Text PDF