Publications by authors named "HaoYuan Li"

Lipid nanoparticle (LNP)-mRNA vaccines have demonstrated protective capability in combating SARS-CoV-2. Their extensive deployment across the global population leads to the broad presence of T-cell immunity against the SARS-CoV-2 spike protein, presenting an opportunity to harness this immunological response as a universal antigen target for cancer treatment. Herein, we design and synthesize a series of amino alcohol- or amino acid-derived ionizable lipids (AA lipids) and develop an LNP-RNA-based antigen presentation platform to redirect spike-specific T-cell immunity against cancer in mouse models.

View Article and Find Full Text PDF

Background: Microhabitat environmental factors (e.g., temperature, oxygen concentration, nutrients, osmotic stress, and topography) are critical to the survival of intertidal organisms.

View Article and Find Full Text PDF

The systemic delivery of mRNA molecules to the central nervous system is challenging as they need to cross the blood-brain barrier (BBB) to reach into the brain. Here we design and synthesize 72 BBB-crossing lipids fabricated by conjugating BBB-crossing modules and amino lipids, and use them to assemble BBB-crossing lipid nanoparticles for mRNA delivery. Screening and structure optimization studies resulted in a lead formulation that has substantially higher mRNA delivery efficiency into the brain than those exhibited by FDA-approved lipid nanoparticles.

View Article and Find Full Text PDF

A transparent craniotomy window is required for optical brain imaging; however, traditional surgical preparation requires well-trained surgeons, is time-consuming, and suffers from low success rates. To address this issue, we present an automatic craniotomy platform combining optical coherence tomography (OCT) with an automated drilling machine. The OCT provides 3D skull data to guide a homemade closed-loop high-precision drill for controlled craniotomies, achieving a 100% success rate in creating small, large, and thinned windows.

View Article and Find Full Text PDF

Lactate derived from aerobic glycolysis is crucial for DNA damage repair and chemoresistance. Nevertheless, it is frequently noted that cancer cells depend on glutaminolysis to replenish essential metabolites. Whether and how glutaminolysis might enhance lactate production and facilitate DNA repair in cancer cells remains unknown.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), also known as microribonucleic acids, are small molecules found in specific tissues that are essential for maintaining proper control of genes and cellular processes. Environmental factors, such as physical exercise, can modulate miRNA expression and induce targeted changes in gene transcription. This article presents an overview of the present knowledge on the principal miRNAs influenced by physical activity in different tissues and bodily fluids.

View Article and Find Full Text PDF

Background: With adolescent obesity rates steadily rising, it has become crucial to identify modifiable risk factors to develop effective interventions. This study explores the associations between physical activity (PA) levels, smartphone usage, and obesity risk among Korean adolescents, aiming to inform the design of targeted health promotion programs to mitigate obesity rates in this demographic.

Methods: This cross-sectional analysis used data from 50,407 Korean adolescents who participated in the 2021 Adolescent Health Behavior Online Survey.

View Article and Find Full Text PDF

Aims: To investigate the effectiveness of histidine-tryptophan-ketoglutarate (HTK) solution compared to Ringer's (RS) solution for preserving isolated hair follicles (HFs), focusing on structural integrity, cell viability, apoptosis prevention, and identifying the mechanisms of cell death during the preservation period.

Materials And Methods: Isolated human HFs were preserved in HTK or RS solution for periods ranging from 2 to 12 h. Morphological changes were assessed using H&E staining and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Supercritical fluids exhibit distinct thermodynamic and transport properties, making them of particular interest for a wide range of scientific and engineering applications. These anomalous properties emerge from structural heterogeneities due to the formation of molecular clusters at conditions above the critical point. While the static behavior of these clusters and their effects on the thermodynamic response functions have been recognized, the relation between the ultrafast cluster dynamics and transport properties remains elusive.

View Article and Find Full Text PDF

The direct catalytic carboxylation of benzylic tertiary C-H bonds with CO for the synthesis of all-carbon quaternary carboxylic acids represents a significant challenge. Here, we present a redox-neutral approach to address this difficulty by leveraging the synergistic interplay between photocatalysis and cascade hydrogen abstraction cycles. Remarkably, this strategy eliminates the need for sacrificial electron donors, electron acceptors, or stoichiometric additives, offering enhanced atom economy and environmental sustainability.

View Article and Find Full Text PDF

Delivery of biomacromolecules to the central nervous system (CNS) remains challenging because of the restrictive nature of the blood-brain barrier (BBB). We developed a BBB-crossing conjugate (BCC) system that facilitates delivery into the CNS through γ-secretase-mediated transcytosis. Intravenous administration of a BCC10-oligonucleotide conjugate demonstrated effective transportation of the oligonucleotide across the BBB and gene silencing in wild-type mice, human brain tissues and an amyotrophic lateral sclerosis mouse model.

View Article and Find Full Text PDF

Background: Hair follicles (HFs) are dynamic structures which are readily accessible within the skin that contain various pools of stem cells with broad regenerative potential, such as dermal papilla cells (DPCs), dermal sheath cells, and epithelial HF stem cells. DPCs act as signalling centres for HF regeneration. The current method for isolating human DPCs are inefficient.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly invasive and malignant central nervous system tumor with a median survival duration of 15 months despite multimodal therapy. The insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) has been implicated in various cancers and is known to regulate RNA metabolism and alternative splicing (AS). However, its role in GBM remains unclear.

View Article and Find Full Text PDF

Herein, we present a strategy for promoting the cyclization of -aryl or alkenyl arylketone oxime ethers C-N bonds using TEMPO as a direct hydrogen atom transfer (HAT) catalyst. The reaction employs a green solvent and requires no introduction of metal additives. It only needs catalytic amount of TEMPO to drive the reaction.

View Article and Find Full Text PDF

To eliminate electromagnetic pollution, it is a challenging task to develop highly efficient electromagnetic shielding materials that integrate microwave absorption (MA) performance with high shielding capability and achieve tunability in shielding performance. Asymmetrically structured aero/organo/hydrogels with a progressively changing concentration gradient of liquid metal nanoparticles (LMNPs), induced by gravity, are prepared by integrating the conductive fillers TiCT MXene and LMNPs into a dual-network structure composed of polyvinyl alcohol and cellulose nanofibers. Benefiting from the unique structure, which facilitates the absorption-reflection-reabsorption process of electromagnetic waves along with conductive fillers and the porous structure, three types of gels demonstrate efficient shielding performance.

View Article and Find Full Text PDF

The effect and molecular regulatory mechanism of A Disintegrin and Metalloproteinase 8 (ADAM8) were explored in alcoholic liver fibrosis (ALF). C57BL/6N male mice were randomly divided into control, alcohol, and ADAM8-sgRNA3 plasmid groups. The control group received control liquid diet, while the alcohol and ADAM8-sgRNA3 plasmid groups were given alcohol liquid feed diet combined with ethanol gavage treatment for 8 weeks to induce ALF modeling.

View Article and Find Full Text PDF

While growing two-dimensional covalent organic frameworks (2D COFs) on substrates holds promise for producing functional monolayers, the presence of many defects in the resulting crystals often hinders their practical applications. Achieving structural order while suppressing defect formation necessitates a detailed atomic-level understanding. The key lies in understanding the polymerization process with high nano-scale accuracy, which presents significant challenges.

View Article and Find Full Text PDF

In this work, we report a protocol for the synthesis of an indoloquinolinone skeleton using visible light-induced energy transfer. This method avoids the premodification of substrates and exhibits high yields. For gram-scale reactions, only 0.

View Article and Find Full Text PDF

Aims: This study aims to systematically analyze the global trends in glioma methylation research using bibliometric methodologies. We focus on identifying the scholarly trajectory and key research interests, and we utilize these insights to predict future research directions within the epigenetic context of glioma.

Methods: We performed a comprehensive literature search of the Web of Science Core Collection (WoSCC) to identify articles related to glioma methylation published from January 1, 2004, to December 31, 2023.

View Article and Find Full Text PDF

Self-discharge and chemically induced mechanical effects degrade calendar and cycle life in intercalation-based electrochromic and electrochemical energy storage devices. In rechargeable lithium-ion batteries, self-discharge in cathodes causes voltage and capacity loss over time. The prevailing self-discharge model centers on the diffusion of lithium ions from the electrolyte into the cathode.

View Article and Find Full Text PDF

Piwi-interacting RNAs (piRNAs) are increasingly recognized as potential biomarkers for various diseases. Investig-ating the complex relationship between piRNAs and diseases through computational methods can reduce the costs and risks associated with biological experiments. Fast kernel learning (FKL) is a classical method for multi-source data fusion that is widely employed in association prediction research.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Standard therapy includes maximal surgical resection, radiotherapy, and adjuvant temozolomide (TMZ) administration. However, the rapid development of TMZ resistance and the impermeability of the blood-brain barrier (BBB) significantly hinder the therapeutic efficacy.

View Article and Find Full Text PDF

Background: This bibliometric analysis aimed to map the knowledge network of laminoplasty research.

Methods: Studies on laminoplasty published from 1982 to 2023 were retrieved from the Web of Science Core Collection (WoSCC). The contributions of countries, institutions, authors, and journals were identified using VOSviewer, Scimago Graphica, and Microsoft Excel.

View Article and Find Full Text PDF

Azulene, known for its unique electronic properties and structural asymmetry, serves as a promising building block for the design of novel non-benzenoid polycyclic aromatic hydrocarbons (PAHs). Herein, we present the synthesis, characterization, and physical properties of three diazulene-fused heptacyclic aromatic hydrocarbons, 8,17-dioctyldiazuleno[2,1-:2',1'-]anthracene ( configuration), 16,18-dioctyldiazuleno[2,1-:1',2'-]anthracene ( configuration) and 3,18-dioctyldiazuleno[2,1-:1',2'-]phenanthrene ( configuration). Three compounds are configurational isomers with different fusing patterns of aromatic rings.

View Article and Find Full Text PDF