Publications by authors named "HaoYu Xue"

Single-crystal high-nickel oxide with an integral structure can prevent intergranular cracks and the associated detrimental reactions. Yet, its low surface-to-volume ratio makes surficial degradation a more critical factor in electrochemical performance. Herein, artificial proton-rich (ammonium bicarbonate) shell is successfully introduced on the nickel-rich LiNiCoMnO single crystals for in situ electrochemically conversing into inorganic maskant to enhance stability of cathode.

View Article and Find Full Text PDF

Single-crystalline Ni-rich layered oxides are one of the most promising cathode materials for lithium-ion batteries due to their superior structural stability. However, sluggish lithium-ion diffusion kinetics and interfacial issues hinder their practical applications. These issues intensify with increasing Ni content in the ultrahigh-Ni regime (≥90%), significantly threatening the practical viability of the single-crystalline strategy for ultrahigh-Ni layered oxide cathodes.

View Article and Find Full Text PDF

Introduction: Endogenous viral elements (EVEs) are viral sequences integrated within the host genome that can influence gene regulation and tumor development. While EVEs have been implicated in cancer, their role in regulating key transcription factors in glioblastoma (GBM) remains underexplored. This study investigates the relationship between EVEs and the activation of OCT4, a critical transcription factor in GBM progression.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) have emerged as prominent therapeutic targets in drug discovery. Among the members of the HDAC family, HDAC8 exhibits distinct structural and physiological features from other members of the class Ⅰ HDACs. In addition to histones, numerous non-histone substrates such as structural maintenance of chromosomes 3 (SMC3), p53, estrogen-related receptor alpha (ERRα), etc.

View Article and Find Full Text PDF

Epigenetics, particularly deacetylation, plays a critical role in tumorigenesis as many carcinogens are under tight control by post-translational modification. HDAC6, an important and special histone deacetylase (HDAC) family member, has been indicated to increase carcinogenesis through various functions. Recent studies demonstrated the effects of HDAC6 inhibitors in mitotic arrest, however, detailed mechanisms still remain unknown.

View Article and Find Full Text PDF

Aggregation-induced emission (AIE) materials are attracting great attention in biomedical fields such as sensors, bioimaging, and cancer treatment, et al. due to their strong fluorescence emission in the aggregated state. In this contribution, a series of tetraphenylene-acetonitrile AIE compounds with D-A-D' structures were synthesized by Suzuki coupling reaction and Knoevenagel condensation, and their relationship of chemical structure and fluorescence properties was investigated in detail, among which TPPA compound was selected as the monomer owing to the longest emission wavelength at about 530 nm with low energy band gap ΔE 3.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: 2,3,5,4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG) is the principal bioactive compound contained in Polygonum multiflorum Thunb. (PMT), which is traditionally recorded to possess tonic and anti-aging efficacy.

Aim Of The Study: To identify the TSG-provided promotion on liver regeneration (LR) following partial hepatectomy (PHx) in mice and to explicate its involved mechanism.

View Article and Find Full Text PDF

In this contribution, a novel AIE monomers 2-(4-styrylphenyl)- 1,2-diphenylvinyl)styryl)pyridine (SDVPY) with smart fluorescent pH-sensitivity basing on tetraphenylethylene-pyridine were successfully synthesized for the first time, subsequently, a series of amphiphilic copolymers PEG-PY were achieved by reversible addition-fragmentation chain transfer (RAFT) polymerization of SDVPY and poly(ethylene glycol) methacrylate (PEGMA), which would self-assemble in water solution to form core-shell nanoparticles (PEG-PY FONs) with about 150 nm diameter. The PEG-PY FONs showed obvious fluorescence response to Fe, HCO and CO ions in aqueous solution owing to their smart pH-sensitivity and AIE characteristics, and their maximum emission wavelength could reversibly change from 525 nm to 624 nm. The as-prepared PEG-PY FONs showed also prospective application in cells imaging with the variable fluorescence for different pH cells micro-environment.

View Article and Find Full Text PDF

Low molecular weight heparins (LMWHs) are derived from heparin through chemical or enzymatic cleavage with an average molecular weight (Mw) of 2000-8000 Da. They exhibit more selective activities and advantages over heparin, causing fewer side effects, such as bleeding and heparin-induced thrombocytopenia. Due to different preparation methods, LMWHs have diverse structures and extensive biological activities.

View Article and Find Full Text PDF

Background: Liver diseases have a negative impact on global health and are a leading cause of death worldwide. Chlorogenic acids (CGAs), a family of esters formed between certain trans-cinnamic acids and quinic acid, are natural polyphenols abundant in coffee, tea, and a variety of traditional Chinese medicines (TCMs). They are reported to have good hepatoprotective effects against various liver diseases.

View Article and Find Full Text PDF

HDAC6, a member of the histone deacetylase family, mainly is a cytosolic protein and regulates cell growth by acting on non-histone substrates, such as α -tubulin, cortactin, heat shock protein HSP90, programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1), that are closely related to the proliferation, invasion, immune escape and angiogenesis of cancer tissues. The approved drugs targeting the HDACs are all pan-inhibitors and have many side effects due to their lack of selectivity. Therefore, development of selective inhibitors of HDAC6 has attracted much attention in the field of cancer therapy.

View Article and Find Full Text PDF

Temperature is one of the important factors affecting the growth, development, and metamorphosis of amphibians. Endochondral ossification during metamorphosis plays a crucial role in amphibian survival and adaptation on land. In this study, we explored the effects of different temperature treatments on the growth, development, and endochondral ossification of Rana chensinensis tadpoles during metamorphosis.

View Article and Find Full Text PDF

The cathode materials work as the host framework for both Li diffusion and electron transport in Li-ion batteries. The Li diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity.

View Article and Find Full Text PDF

As a potential substitute for lithium-ion battery, sodium-ion batteries (SIBs) have attracted a tremendous amount of attention due to their advantages in terms of cost, safety and sustainability. Nevertheless, further improvement of the energy density of cathode materials in SIBs remains challenging and requires the activation of anion redox reaction (ARR) activity to provide additional capacity. Herein, we report a high-performance Mn-based sodium oxide cathode material, NaMgZnMnO (NMZMO), with synergistic activation of ARR by cosubstitution.

View Article and Find Full Text PDF

Climate change such as global warming is considered a major threat to amphibians. The guts of amphibians are home to trillions of microbes, which are key regulators of gastrointestinal digestion and play a crucial role in lipid metabolites. The aim of this study was to evaluate the effect of temperature change on intestinal microbiota and lipid metabolism in Rana chensinensis tadpoles.

View Article and Find Full Text PDF

Gardenia jasminoides Ellis is a well-known herbal medicine. In this study, the effect of G. jasminoides Ellis polysaccharide (GPS) on liver injury in an alpha-naphthylisothiocyanate (ANIT)-induced cholestatic mouse model and the associated molecular mechanisms were investigated.

View Article and Find Full Text PDF

Da-Huang-Xiao-Shi decoction (DHXSD) is a traditional Chinese medicine formula and is used to treat cholestasis. In this study, we developed a reliable and comprehensive HPLC coupled with a linear ion trap-Orbitrap mass spectrometry method for the separation and determination of 21 components including six alkaloids, five anthraquinones, three tannins, three terpenes, two iridoid glycosides, one organic acid and one flavonoid in DHXSD. A C18 column was eluted using a gradient mobile phase at a flow rate of 1 ml/min.

View Article and Find Full Text PDF

Macrophages play a key role in inflammation, infection, cancer, and repairing damaged tissues. Thus, modulating macrophages with engineered nanomaterials is an important therapeutic strategy for healing chronic inflammatory injuries. However, designing and manufacturing therapeutic nanomaterials remains challenging.

View Article and Find Full Text PDF

Alkali metals have low potentials and high capacities, making them ideal anodes for next-generation batteries, but they suffer major problems, including dendrite growth and low Coulombic efficiency (CE). Achieving uniform metal deposition and having a reliable solid electrolyte interphase (SEI) are the basic requirements for overcoming these problems. Here, a general remedy is reported for various alkali-metal anodes by the supramolecularization of alkali-metal cations with crown ethers that follows a size-matching rule.

View Article and Find Full Text PDF

Cholestasis is characterized by obstruction of bile flow and can lead to serious liver injury. With sustained damage, cholestasis can progress to cholestatic liver fibrosis (CLF), and cirrhosis. Non-invasive, predictive, and reliable metabolites based on the early and progressive stages of CLF are urgently needed.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Chronic cholestasis is a usual clinical pathological process in hepatopathy and has few treatment options; it is classified under the category of jaundice in Chinese medicine. Da-Huang-Xiao-Shi decoction (DHXSD) is a classic Chinese prescription which is used to treat jaundice.

Aim Of The Study: We aimed to examine the protective effect of DHXSD on liver and its potential mechanism of action against chronic cholestasis.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Natural bear bile powder (NBBP) has been used to treat seizures for thousands of years, but its application is greatly restricted due to ethical reasons. Cultured bear bile powder (CBBP), which is produced by biotransformation, may be an appropriate substitute for NBBP. However, the anti-convulsant effects of CBBP and its mechanisms remain unclear.

View Article and Find Full Text PDF

Da-Huang-Xiao-Shi decoction (DHXSD), a traditional Chinese medicinal formula, has been used mainly to treat jaundice for more than 1700 years in China. In this study, we developed a rapid, sensitive, and accurate LC-MS/MS method to simultaneously determine multiple, potentially bioactive compounds of DHXSD, including five alkaloids (berberine, phellodendrine, palmatine, jatrorrhizine, and magnoflorine), five anthraquinones (rhein, aloe-emodin, emodin, chrysophanol, and physcion), two iridoid glycosides (geniposide and genipin 1-gentiobioside), and one iridoid aglycone (genipin) in rat plasma. Plasma samples collected from rats were treated immediately with 5% acetic acid to avoid the degradation of genipin.

View Article and Find Full Text PDF

Zwitterionic polymer is a new generation of anti-fouling materials with its good resistance to protein and bacterial adhesion. Constructing the anti-fouling surfaces with zwitterionic polymer has been regarded as an effective approach for improving the biocompatibility and biofunctionality of clinic devices. Herein, we reported a facile approach to construct a biodegradable anti-biofouling and functionalizable hydrogel coating via photo-immobilization using commercial polyethylene terephthalate (PET) films as the substrate, based on zwitterionic glycidyl methacrylate-phosphorylcholine-chitosan (PCCs-GMA).

View Article and Find Full Text PDF