Publications by authors named "Hao-shen Zhou"

The cathode materials of Li-ion batteries for electric vehicles require not only a large gravimetric capacity but also a high volumetric capacity. A new Li-rich layered oxide cathode with superior capacity, Li[Li0.20Ni0.

View Article and Find Full Text PDF

In this work, we have experimentally demonstrated that in a rectangular multilayered Ag/SiO₂ nanoplate array, electric and magnetic resonances are exchanged at the same frequency simply by changing the polarization of incident light for 90°. Both electric and magnetic resonances originate from localized surface plasmons, and lead to negative permittivity and permeability, respectively. The numerical calculations on electromagnetic fields agree with the experiments.

View Article and Find Full Text PDF

The lithium storage properties of graphene nanosheet (GNS) materials as high capacity anode materials for rechargeable lithium secondary batteries (LIB) were investigated. Graphite is a practical anode material used for LIB, because of its capability for reversible lithium ion intercalation in the layered crystals, and the structural similarities of GNS to graphite may provide another type of intercalation anode compound. While the accommodation of lithium in these layered compounds is influenced by the layer spacing between the graphene nanosheets, control of the intergraphene sheet distance through interacting molecules such as carbon nanotubes (CNT) or fullerenes (C60) might be crucial for enhancement of the storage capacity.

View Article and Find Full Text PDF

The gas selectivities of highly ordered mesoporous silicates and commercially-obtained porous silicates with respect to benzene, toluene and xylene were studied. After studying the porosities, pore uniformities, and surface silanol structures of the silicates and their relationships to gas selectivity in detail, we found that we could achieve high benzene selectivity by controlling the micropore size (less than 1 nm). Concluding that mesoporous silicate has a suitable micropore size and structure for benzene selectivity, we also observed that mesoporous silicate SBA-16 exhibited a high (>6) benzene selectivity from toluene and xylene even in a pseudo-atmospheric environment.

View Article and Find Full Text PDF

The high benzene gas selectivity of mesoporous silicate (SBA-15) was observed in the sub-nanometre micropore condensation region. The benzene/toluene ratios of the adsorbed amount were >100 and >6 in ideal and pseudo-atmospheric environments, respectively.

View Article and Find Full Text PDF

We achieved separate detection of the components of 10 ppm of a benzene, toluene, and o-xylene mixture gas by using mesoporous silica powder incorporated in our microfluidic device. The device consists of concentration and detection cells formed of 3 cm x 1 cm Pyrex plates. We first introduced the mixture gas into the concentration cell where it was adsorbed on an adsorbent in a channel formed in the cell.

View Article and Find Full Text PDF