Publications by authors named "Hao-Zhe Ruan"

This article focuses on engineering Corynebacterium glutamicum to produce L-lysine efficiently from starch using combined method of "classical breeding" and "genome breeding." Firstly, a thermo-tolerable L-lysine-producing C. glutamicum strain KT was obtained after multi-round of acclimatization at high temperature.

View Article and Find Full Text PDF

The efficiency of industrial fermentation process mainly depends on carbon yield, final titer and productivity. To improve the efficiency of L-lysine production from mixed sugar, we engineered carbohydrate metabolism systems to enhance the effective use of sugar in this study. A functional metabolic pathway of sucrose and fructose was engineered through introduction of fructokinase from Clostridium acetobutylicum.

View Article and Find Full Text PDF

Background: NAD(H/) and NADP(H/) are the most important redox cofactors in bacteria. However, the intracellular redox balance is in advantage of the cell growth and production of NAD(P)H-dependent products.

Results: In this paper, we rationally engineered glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and isocitrate dehydrogenase (IDH) to switch the nucleotide-cofactor specificity resulting in an increase in final titer [from 85.

View Article and Find Full Text PDF

Dehydrogenase pathway, one of diaminopimelate pathway, is important to the biosynthesis of L-lysine and peptidoglycan via one single reaction catalyzed by meso-diaminopimelate dehydrogenase (DapDH). In this study, the thermostable DapDH was introduced into diaminopimelate pathway that increased the final titer (from 71.8 to 119.

View Article and Find Full Text PDF