The present study was designed to synthesize and evaluate a series of benzylisoquinoline derivatives. These compounds were synthesized by Bischler-Napieralski cyclization to yield 1-benzyl-3,4-dihydroisoquinolines, and the products were obtained by reductions. All these compounds were identified by MS, (1)H NMR and (13)C NMR.
View Article and Find Full Text PDFAdrenoreceptors (ARs) are widely expressed and play essential roles throughout the body. Different subtype adrenoceptors elicit distinct effects on cell proliferation, but knowledge remains scarce about the subtype-specific effects of β2-ARs on the proliferation of embryonic pluripotent stem (PS) cells that represent different characteristics of proliferation and cell cycle regulation with the somatic cells. Herein, we identified a β2-AR/AC/cAMP/PKA signaling pathway in embryonic PS cells and found that the pathway stimulation inhibited proliferation and cell cycle progression involving modulating the stem cell growth and cycle regulatory machinery.
View Article and Find Full Text PDFDynamic, continuous, and simultaneous multi-analysis of transmitters is important for the delineation of the complex interactions between the neuronal and intercellular communications. But the analysis of the whole repertoire of classical transmitters of diverse structure is challenging due to their different physico-chemical properties and to their high polarity feature which leads to poor retention in traditional reversed-phase columns during LC-MS analysis. Here, an online microdialysis coupled with hydrophilic interaction chromatography-tandem mass spectrometry (online MD-HILIC-MS/MS) detection method was developed for the simultaneous measurement of the repertoire of classical transmitters (acetylcholine, serotonin, dopamine, norepinephrine, glutamate, GABA, and glycine).
View Article and Find Full Text PDFγ-Aminobutyric acid (GABA), the principle inhibitory transmitter in the mature central nervous system, is also involved in activities outside the nervous system. Recent studies have shown that functional GABA receptors are expressed in embryonic stem (ES) cells and these receptors control ES cell proliferation. However, it is not clear whether ES cells have their own GABAergic transmission output machinery that can fulfill GABA release or whether the cells merely process the GABA receptors by receiving and responding to the diffused GABA released elsewhere.
View Article and Find Full Text PDF