Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development.
View Article and Find Full Text PDFThe prevalence of depression in diabetes mellitus (DM) patients is very high, and it severely impacts the prognosis and quality of life of these patients. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, a new type of oral hypoglycemic drugs, have been shown to alleviate depressive symptoms in DM patients; however, the mechanism underlying this effect is not well understood. The lateral habenula (LHb) plays an important role in the pathogenesis of depression expresses SGLT2, suggesting that the LHb may mediate antidepressant effects of SGLT2 inhibitors.
View Article and Find Full Text PDFProstate cancer (PCa) is the second most common malignancy in men. Despite multidisciplinary treatments, patients with PCa continue to experience poor prognoses and high rates of tumor recurrence. Recent studies have shown that tumor-infiltrating immune cells (TIICs) are associated with PCa tumorigenesis.
View Article and Find Full Text PDFAccurately predicting the survival prospects of patients suffering from pancreatic adenocarcinoma (PAAD) is challenging. In this study, we analyzed RNA matrices of 182 subjects with PAAD based on public datasets obtained from The Cancer Genome Atlas (TCGA) as training datasets and those of 63 subjects obtained from the Gene Expression Omnibus (GEO) database as the validation dataset. Genes regulating the metabolism of PAAD cells correlated with survival were identified.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) as novel electrode materials have attracted intensive attention; however, low electronic conductivity hinders their practical application in lithium ion batteries (LIBs). This work reports the synthesis of conductive MOF/CNT composites with enhanced electrochemical reactivity. The growth mechanism of the pristine MOF and the correlations of two components are investigated from the viewpoint of crystal engineering.
View Article and Find Full Text PDF