Publications by authors named "Hao-Yen Tang"

This paper presents a 591×438-DPI ultrasonic fingerprint sensor. The sensor is based on a piezoelectric micromachined ultrasonic transducer (PMUT) array that is bonded at wafer-level to complementary metal oxide semiconductor (CMOS) signal processing electronics to produce a pulse-echo ultrasonic imager on a chip. To meet the 500-DPI standard for consumer fingerprint sensors, the PMUT pitch was reduced by approximately a factor of two relative to an earlier design.

View Article and Find Full Text PDF

In this paper, we present a single-chip 65 ×42 element ultrasonic pulse-echo fingerprint sensor with transmit (TX) beamforming based on piezoelectric micromachined ultrasonic transducers directly bonded to a CMOS readout application-specific integrated circuit (ASIC). The readout ASIC was realized in a standard 180-nm CMOS process with a 24-V high-voltage transistor option. Pulse-echo measurements are performed column-by-column in sequence using either one column or five columns to TX the ultrasonic pulse at 20 MHz.

View Article and Find Full Text PDF

We present a miniaturized portable ultrasonic imager that uses a custom ASIC and a piezoelectric transducer array to transmit and capture 2-D sonographs. The ASIC, fabricated in 0.18 μm 32 V CMOS process, contains 7 identical channels, each with high-voltage level-shifters, high-voltage DC-DC converters, digital TX beamformer, and RX front-end.

View Article and Find Full Text PDF

In this paper, we present an ultrasonic beamforming system capable of interrogating individual implantable sensors via backscatter in a distributed, ultrasound-based recording platform known as Neural Dust [1]. A custom ASIC drives a 7 × 2 PZT transducer array with 3 cycles of 32V square wave with a specific programmable time delay to focus the beam at the 800mm neural dust mote placed 50mm away. The measured acoustic-to-electrical conversion efficiency of the receive mote in water is 0.

View Article and Find Full Text PDF