The behavioral sensitization, characterized by escalated behavioral responses triggered by recurrent exposure to psychostimulants, involves neurobiological mechanisms that are brain-region and cell-type specific. Enduring neuroadaptive changes have been observed in response to methamphetamine (METH) within the orbitofrontal cortex (OFC), the cell-type specific transcriptional alterations in response to METH sensitization remain understudied. In this study, we utilized Single-nucleus RNA-sequencing (snRNA-seq) to profile the gene expression changes in the OFC of a rat METH sensitization model.
View Article and Find Full Text PDFThe hypothesis of N-methyl-D-aspartate receptor (NMDAR) dysfunction for cognitive impairment in schizophrenia constitutes the theoretical basis for the translational application of NMDAR co-agonist D-serine or its analogs. However, the cellular mechanism underlying the therapeutic effect of D-serine remains unclear. In this study, we utilize a mouse neurodevelopmental model for schizophrenia that mimics prenatal pathogenesis and exhibits hypoexcitability of parvalbumin-positive (PV) neurons, as well as PV-preferential NMDAR dysfunction.
View Article and Find Full Text PDFRationale: Serotonergic psychedelics show promise in the treatment of psychiatric disorders, including obsessive-compulsive disorder. Dysfunction of the orbitofrontal cortex (OFc) has been implicated in the pathophysiology of compulsive behavior, which might be a key region for the efficacy of psychedelics. However, the effects of psychedelics on the neural activities and local excitation/inhibition (E/I) balance in the OFc are unclear.
View Article and Find Full Text PDFSerotoninergic psychedelics induced extensive alterations in perception and cognition, which has been attributable to its disruptive effect on oscillatory rhythms of prefrontal cortex. However, there is a lack of information how serotoninergic psychedelics affect the intra-prefrontal network, which intrinsically interact to accomplish perceptual processing. Uncovering the altered neural network caused by psychedelics helps to understand the mechanisms of their psychoactive effects and contribute to develop biological markers of psychedelic effects.
View Article and Find Full Text PDFThe I imidazoline receptor and its candidate protein imidazoline receptor antisera-selected (IRAS)/Nischarin are linked to μ opioid receptor (MOR) functions associated with MOR trafficking. We previously demonstrated that IRAS may play an important role in the development of morphine tolerance and physical dependence in vivo. However, the effects of IRAS on morphine psychological dependence are not fully understood.
View Article and Find Full Text PDFBackground: Abnormal morphology and function of neurons in the prefrontal cortex (PFC) are associated with cognitive deficits in rodent models of Alzheimer's disease (AD), particularly in cortical layer-5 pyramidal neurons that integrate inputs from different sources and project outputs to cortical or subcortical structures. Pyramidal neurons in layer-5 of the PFC can be classified as two subtypes depending on the inducibility of prominent hyperpolarization-activated cation currents (h-current). However, the differences in the neurophysiological alterations between these two subtypes in rodent models of AD remain poorly understood.
View Article and Find Full Text PDFImpaired glutamate homeostasis is a key characteristic of the neurobiology of drug addiction in rodent models and contributes to the vulnerability to relapse to drug seeking. Although disrupted astrocytic and presynaptic regulation of glutamate release has been considered to constitute with impaired glutamate homeostasis in rodent model of drug relapse, the involvement of endocannabinoids (eCBs) in this neurobiological process has remained largely unknown. Here, using cocaine self-administration in rats, we investigated the role of endocannabinoids in impaired glutamate homeostasis in the core of nucleus accumbens (NAcore), which was indicated by augmentation of spontaneous synaptic glutamate release, downregulation of metabotropic glutamate receptor 2/3 (mGluR2/3), and mGluR5-mediated astrocytic glutamate release.
View Article and Find Full Text PDFNeurodevelopmental abnormalities are associated with cognitive dysfunction in schizophrenia. In particular, deficits of working memory, are consistently observed in schizophrenia, reflecting prefrontal cortex (PFc) dysfunction. To elucidate the mechanism of such deficits in working memory, the pathophysiological properties of PFc neurons and synaptic transmission have been studied in several developmental models of schizophrenia.
View Article and Find Full Text PDFJuvenile social isolation (SI) and neglect have a negative impact on neurodevelopment persistently, which is associated with cognitive dysfunction in neurodevelopmental disorders. Given the critical role of metabotropic glutamate receptors (mGluRs) in synaptic homeostasis of the prefrontal cortex (PFC), pharmacological intervention on mGluRs has been attempted in order to improve cognitive dysfunction in animal models of neurodevelopmental disorder, as well as in clinical trials. Here we examined the effects of the mGluR2/3 antagonist LY341495 on prefrontal synaptic transmission, spatial working memory, and recognition memory in adult C57BL/6J mice that experienced juvenile SI.
View Article and Find Full Text PDFRationale: Juvenile social isolation (SI) and neglect is associated with a wide range of psychiatric disorders. While dysfunction of the corticolimbic pathway is considered to link various abnormal behaviors in SI models of schizophrenia, the enduring effects of early social deprivation on physiological properties of medium spiny neurons (MSNs) in nucleus accumbens (NAc) are not well understood.
Objectives: This study investigated the impacts of juvenile SI on locomotor activity to methamphetamine (METH) and neurophysiological characteristics of MSNs in the core of NAc.
Int J Neuropsychopharmacol
September 2019
Background: The hallmark characteristics of the murine model of drug addiction include the escalation of cocaine consumption and compulsive punishment-resistant drug seeking. In this study, we evaluated the motivation for drug seeking in cocaine self-administering rats exposed to an escalated dosing regimen that endeavored to mimic the characteristic of escalating drug intake in human addicts. Tropisetron is a 5-HT3 receptor antagonist and α7-nicotinic receptor partial agonist.
View Article and Find Full Text PDFThe synthetic cathinones are derived from the naturally occurring drug cathinone found in the khat plant (Catha edulis) and have chemical structures and neurochemical consequences similar to other psychostimulants. This class of new psychoactive substances (NPS) also has potential for use and abuse coupled with a range of possible adverse effects including neurotoxicity and lethality. This review provides a general background of the synthetic cathinones in terms of the motivation for and patterns and demographics of their use as well as the behavioral and physiological effects that led to their spread as abused substances and consequent regulatory control.
View Article and Find Full Text PDFBinocular depth perception (BDP) is one of the most demanding visual function that involves both dorsal and ventral visual information streams. Substantial research has been conducted on the disruption of BDP in patients with schizophrenia. However, research on first-episode and drug-naive patients with schizophrenia (FEDN) is limited.
View Article and Find Full Text PDFBackground: 4-Methylethcathinone is a drug that belongs to the second generation of synthetic cathinones, and recently it has been ranked among the most popular "legal highs". Although it has similar in vitro neurochemical actions to other drugs such as cocaine, the behavioral effects of 4-methylethcathinone remain to be determined.
Methods: The addictive potential and locomotor potentiation by 4-methylethcathinone were investigated in rats using the conditioned place preference and sensitization paradigm.
We recently reported that a conditioned stimulus (CS) memory retrieval-extinction procedure decreases reinstatement of cocaine and heroin seeking in rats and heroin craving in humans. Here we show that non-contingent cocaine or methylphenidate injections (UCS retrieval) 1 h before the extinction sessions decreases cocaine-priming-induced reinstatement, spontaneous recovery, and renewal of cocaine seeking in rats. Unlike the CS-based memory retrieval-extinction procedure, the UCS memory retrieval manipulation decreases renewal and reinstatement of cocaine seeking in the presence of cocaine cues that were not present during extinction training and also decreases cocaine seeking when the procedure commences after 28 days of abstinence.
View Article and Find Full Text PDFRepeated administration of methamphetamine (METH) enhances acute locomotor responses to METH administered in the same context, a phenomenon termed as 'locomotor sensitization'. Although many of the acute effects of METH are mediated by its influences on the compartmentalization of dopamine, serotonin systems have also been suggested to influence the behavioral effects of METH in ways that are not fully understood. The present experiments examined serotonergic roles in METH-induced locomotor sensitization by assessing: (a) the effect of serotonin transporter (SERT; Slc6A4) knockout (KO) on METH-induced locomotor sensitization; (b) extracellular monoamine levels in METH-treated animals as determined by in-vivo microdialysis; and (c) effects of serotonin (5-HT) receptor antagonists on METH-induced behavioral sensitization, with focus on effects of the 5-HT1B receptor antagonist SB 216641 and a comparison with the 5-HT2 receptor antagonist ketanserin.
View Article and Find Full Text PDFMaladaptive memories elicited by exposure to environmental stimuli associated with drugs of abuse are often responsible for relapse among addicts. Interference with the reconsolidation of drug memory can inhibit drug seeking. Previous studies have indicated that the dephosphorylation of the eukaryotic initiation factor 2 α-subunit (eIF2α) plays an important role in synaptic plasticity and long-term memory consolidation, but its role in the reconsolidation of drug memory remains unknown.
View Article and Find Full Text PDFReducing the enduring vulnerability to relapse is a therapeutic goal in treating drug addiction. Studies with animal models of drug addiction show a marked increase in extrasynaptic glutamate in the core subcompartment of the nucleus accumbens (NAcore) during reinstated drug seeking. However, the synaptic mechanisms linking drug-induced changes in extrasynaptic glutamate to relapse are poorly understood.
View Article and Find Full Text PDFRationale And Objectives: A conditioned stimulus (CS) is associated with a fearful unconditioned stimulus (US) in the traditional fear conditioning model. After fear conditioning, the CS-US association memory undergoes the consolidation process to become stable. Consolidated memory enters an unstable state after retrieval and requires the reconsolidation process to stabilize again.
View Article and Find Full Text PDFAddictive drug use causes long-lasting changes in synaptic strength and dendritic spine morphology in the nucleus accumbens that might underlie the vulnerability to relapse. Although activity in mesocorticolimbic circuitry is required for reinstating cocaine seeking, its role in reinstatement-associated synaptic plasticity is not well characterized. Using rats extinguished from cocaine self-administration, we found potentiated synaptic strength (assessed as the AMPA/NMDA current amplitude ratio) and increased spine head diameter in medium spiny neurons in the accumbens core (NAcore).
View Article and Find Full Text PDFDrug addiction is a chronic brain disorder with the hallmark of a high rate of relapse to compulsive drug seeking and drug taking even after long-term abstinence. Addiction has been considered as an aberrant memory that has been termed "addiction memory." Drug-related memory plays a critical role in the maintenance of learned addictive behaviors and emergence of relapse.
View Article and Find Full Text PDFRationale And Objectives: Drug reinforcement and the reinstatement of drug seeking are associated with the pathological processing of drug-associated cue memories that can be disrupted by manipulating memory consolidation and reconsolidation. Ras-related C3 botulinum toxin substrate (Rac) is involved in memory processing by regulating actin dynamics and neural structure plasticity. The nucleus accumbens (NAc) and amygdala have been implicated in the consolidation and reconsolidation of emotional memories.
View Article and Find Full Text PDFThis study investigated the consequence of repeated stress on actin cytoskeleton remodeling in the nucleus accumbens (NAc) and prefrontal cortex (Pfc), and the involvement of this remodeling in the expression of stress-induced motor cross-sensitization with cocaine. Wistar rats were restrained daily (2 h) for 7 days and, 3 weeks later, their NAc and Pfc were dissected 45 min after acute saline or cocaine (30 mg/kg i.p.
View Article and Find Full Text PDFRelapse to cocaine-seeking involves impairments in plasticity at glutamatergic synapses in the nucleus accumbens. Integrins are cell adhesion molecules that bind to the extracellular matrix and regulate aspects of synaptic plasticity, including glutamate receptor trafficking. To determine a role for integrins in cocaine-seeking, rats were trained to self-administer cocaine, the operant response extinguished, and cocaine-seeking induced by a conditioned cue or noncontingent cocaine injection.
View Article and Find Full Text PDFChronic cocaine treatment is associated with changes in dendritic spines in the nucleus accumbens, but it is unknown whether this neuroplasticity alters the effect of a subsequent cocaine injection on spine morphology and protein content. Three weeks after daily cocaine or saline administration, neurons in the accumbens were filled with the lipophilic dye, DiI. Although daily cocaine pretreatment did not alter spine density compared with daily saline, there was a shift from smaller to larger diameter spines.
View Article and Find Full Text PDF