Publications by authors named "Hao-Peng Sun"

Diabetes is one of the metabolic disorders in the world. It is the prime reason of mortality and morbidity owing to hyperglycemia which is link with numerus obstacles. Artemisia argyi is commonly used as an ingredient in healthy foods as well as an herbal medicine in Asian countries.

View Article and Find Full Text PDF

Isoxazole compounds exhibit a wide spectrum of targets and broad biological activities. Developing compounds with heterocycle rings has been one of the trends. The integration of isoxazole ring can offer improved physical-chemical properties.

View Article and Find Full Text PDF

There is a growing interest in the exploitation of agricultural byproducts. This study explored the potential beneficial health effects from the main biowaste, tea seed pomace of Camellia oleifera Abel (Theaceae), produced when tea seed is processed. Eighteen compounds were isolated from the 70% EtOH extract of the seed cake of C.

View Article and Find Full Text PDF

Designing multitarget-directed ligands (MTDLs) is considered to be a promising approach to address complex and multifactorial maladies such as Alzheimer's disease (AD). The concurrent inhibition of the two crucial AD targets, glycogen synthase kinase-3β (GSK-3β) and human acetylcholinesterase (AChE), might represent a breakthrough in the quest for clinical efficacy. Thus, a novel family of GSK-3β/AChE dual-target inhibitors was designed and synthesized.

View Article and Find Full Text PDF

Major research efforts have been devoted to the discovery and development of new chemical entities that could inhibit the protein-protein interaction between HIF-1 and the von Hippel-Lindau protein (pVHL), which serves as the substrate recognition subunit of an E3 ligase and is regarded as a crucial drug target in cancer, chronic anemia, and ischemia. Currently there is only one class of compounds available to interdict the HIF-1/pVHL interaction, urging the need to discover chemical inhibitors with more diversified structures. We report here a strategy combining shape-based virtual screening and cascade docking to identify new chemical scaffolds for the designing of novel inhibitors.

View Article and Find Full Text PDF

Nuclear factor erythroid 2-related factor (NRF2) is an important transcription factor in oxidative stress regulation. Overexpression of NRF2 is associated with human breast carcinogenesis, and increased NRF2 mRNA levels predict poor patient outcome for breast cancer. However, the mechanisms linking gain of NRF2 expression and poor prognosis in breast cancer are still unclear.

View Article and Find Full Text PDF

Background: G9a is the primary enzyme for mono- and dimethylation at Lys 9 of histone H3 and forms predominantly the heteromeric complex as a G9a-GLP (G9a-like protein) that is a functional histone lysine methltransferase in vivo. Mounting evidence suggests that G9a catalyzes methylation of histone and nonhistone proteins, which plays a crucial role in diverse biological processes and human diseases.

Methods: In this study, the current knowledge on biological functions of G9a and inhibitors were summarized.

View Article and Find Full Text PDF

We previously reported 4-(3-((6-bromonaphthalen-2-yl)oxy)-2-hydroxypropyl)-N,N-dimethylpiperazine-1-sulfonamide (1) as a novel heat shock protein 90 inhibitor with moderate activity. In our ongoing efforts for the discovery of Hsp90 modulators we undertake structural investigations on 1. Series of the titled compound were designed, synthesized and evaluated.

View Article and Find Full Text PDF

MLL1 complex catalyzes the methylation of H3K4, and plays important roles in the development of acute leukemia harboring MLL fusion proteins. Targeting MLL1-WDR5 protein-protein interaction (PPI) to inhibit the activity of histone methyltransferase of MLL1 complex is a novel strategy for treating of acute leukemia. WDR5-47 (IC50 = 0.

View Article and Find Full Text PDF

p53-independent malignant cancer is still severe health problem of human beings. HIF-1 pathway is believed to play an important role in the survival and developing progress of such cancers. In the present study, with the aim to inhibit the proliferation of p53-independent malignant cells, we disclose the optimization of 6a, the starting compound which is discovered in the screening of in-house compound collection.

View Article and Find Full Text PDF

Heat-shock protein 90 (Hsp90) is highly expressed in many tumor cells and is associated with the maintenance of malignant phenotypes. Targeting Hsp90 has had therapeutic success in both solid and hematological malignancies, which has inspired more studies to identify new Hsp90 inhibitors with improved clinical efficacy. Using a fragment-based approach and subsequent structural optimization guided by medicinal chemistry principles, we identified the novel compound CPUY201112 as a potent Hsp90 inhibitor.

View Article and Find Full Text PDF

Directly disrupting the Keap1-Nrf2 protein-protein interaction (PPI) is an effective way to activate Nrf2. Using the potent Keap1-Nrf2 PPI inhibitor that was reported by our group, we conducted a preliminary investigation of the structure-activity and structure-property relationships of the ring systems to improve the drug-like properties. Compound 18e, which bore p-acetamido substituents on the side chain phenyl rings, was the best choice for balancing PPI inhibition activity, physicochemical properties, and cellular Nrf2 activity.

View Article and Find Full Text PDF

Targeting acetylcholinesterase (AChE) using small molecule inhibitors is considered to be the most successful therapeutic strategy in the treatment of Alzheimer's disease (AD). Herein we present a shape-based virtual screening to identify new cores for the designing of AChE inhibitors. Ten active hits are identified and the most active hit, 5169-0032 and T5369186, showed comparable AChE inhibitory activity to tacrine.

View Article and Find Full Text PDF

Induction of phase II antioxidant enzymes by activation of Nrf2/ARE pathway has been recognized as a promising strategy for the regulation of oxidative stress-related diseases. Herein we report our effort on the discovery and optimization of Nrf2 activators with 1,2,4-oxadiazole core. Screening of an in-house collection containing 7500 compounds by ARE-luciferase reporter assay revealed a moderate Nrf2 activator, 1.

View Article and Find Full Text PDF

A sensitive and selective strategy for the colorimetric visualization of the total monomeric Aβ down to 40 pg mL(-1) based on dual-functionalized gold nanoplasmonic particles (GNPs) is developed and applied to evaluate Aβ levels in the AD cerebral system.

View Article and Find Full Text PDF

E3 ubiquitin ligases are attractive drug targets due to their specificity to the ubiquitin machinery. However, the development of E3 ligase inhibitors has proven challenging for the fact that they must disrupt protein-protein interactions (PPIs). The E3 ligase involved in interactome provide new hope for the discovery of the E3 ligase inhibitors.

View Article and Find Full Text PDF

NF-κB is a significant transcription factor that regulates the expression of various pro-survival genes. IKK is a crucial protein kinase that activates NF-κB translocating from cytoplasm to nucleus for DNA binding. It is composed of three subunits, IKKα, IKKβ, IKKγ (NEMO), where IKKα and IKKβ are catalytic subunits, and IKKγ is the regulatory subunit.

View Article and Find Full Text PDF

NF-κB essential modulator (NEMO), the non-catalytic regulatory subunit of the IκB kinase (IKK) complex, is essential for the canonical NF-κB activation pathway. It has been identified as a molecular platform for assembling the IKK complex and recruiting upstream IKK activators. However, the exact mechanism for regulating IKK activity has still remained elusive.

View Article and Find Full Text PDF

Several chemical fragments have been confirmed as highly efficient cores for the design of Hsp90 inhibitors. Molecular hybridization of potent fragments has been widely used as a rational drug discovery strategy. In this study, a novel class of hybrids of benzofuran, a privileged core from natural products, and 2,4-dihydroxy-5-isopropyl phenyl, an efficient fragment in Hsp90 inhibitors, were designed and synthesized.

View Article and Find Full Text PDF

Designing of natural product-like compounds using natural products as template structures is an important strategy for the discovery of new drugs. Gambogic acid (GA), which is a Garcinia natural product with a unique caged xanthone scaffold, inhibits potent antitumor activity both in vitro and in vivo. This review summarized the researches on the identification of the antitumor pharmacophore of GA, and the design, structural optimization and structure-activity relationship (SAR) of natural product-like caged xanthones based on it.

View Article and Find Full Text PDF

Rapid Overlay of Chemical Structures (ROCS), which can rapidly identify potentially active compounds by shape comparison, is recognized as a powerful virtual screening tool. By ROCS, a class of novel Hsp90 inhibitors was identified. The calculated binding mode of the most potent hit 36 guided us to design and synthesize a series of analogs (57a-57h).

View Article and Find Full Text PDF

Hsp90 as a promising therapeutic target for the treatment of cancer has received great attention. Many Hsp90 inhibitors such as BIIB021 and CUDC-305 have been in clinical. In this paper shape-based similarity screening through ROCS overlays on the basis of CUDC-305, BIIB021, PU-H71 and PU-3 were performed to discover HSP90 inhibitors.

View Article and Find Full Text PDF

Previously, we identified 1-(2-(4-bromophenoxy)ethoxy)-3-(4-(2-methoxyphenyl)piperazin-1-yl)propan-2-ol (1) as a novel Hsp90 inhibitor with moderate activity through virtual screening. In this study, we report the optimization process of 1. A series of analogues containing the 1-phenylpiperazine core scaffold were synthesized and evaluated.

View Article and Find Full Text PDF

Keap1 is known to mediate the ubiquitination of Nrf2, a master regulator of the antioxidant response. Directly interrupting the Keap1-Nrf2 interaction has been emerged as a promising strategy to develop novel class of antioxidant, antiinflammatory, and anticancer agents. On the basis of the molecular binding determinants analysis of Keap1, we successfully designed and characterized the most potent protein-protein interaction (PPI) inhibitor of Keap1-Nrf2, compound 2, with K(D) value of 3.

View Article and Find Full Text PDF

Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1), a substrate adaptor component of the Cullin3 (Cul3)-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor 2 (Nrf2) and IκB kinase β (IKKβ), which are involved in the redox control of gene transcription. However, compared to the Keap1-Nrf2 protein-protein interaction (PPI), the intermolecular recognition mechanism of Keap1 and IKKβ has been poorly investigated.

View Article and Find Full Text PDF