Cancer metastasis and drug resistance are important malignant tumor phenotypes that cause roughly 90% mortality in human cancers. Current therapeutic strategies, however, face substantial challenges partially due to a lack of applicable pre-clinical models and drug-screening platforms. Notably, microscale and three-dimensional (3D) tissue culture platforms capable of mimicking in vivo microenvironments to replicate physiological conditions have become vital tools in a wide range of cellular and clinical studies.
View Article and Find Full Text PDFThree-dimensional (3D) tissue culture platforms that are capable of mimicking in vivo microenvironments to replicate physiological conditions are vital tools in a wide range of cellular and clinical studies. Here, learning from the nature of cilia in lungs - clearing mucus and pathogens from the airway - we develop a 3D culture approach via flexible and kinetic copolymer-based chains (nano-cilia) for diminishing cell-to-substrate adhesion. Multicellular spheroids or colonies were tested for 3-7 days in a microenvironment consisting of generated cells with properties of putative cancer stem cells (CSCs).
View Article and Find Full Text PDF