Ethanol is the most widely used and abused drug. While blood is the preferred specimen for analysis, tissue specimens such as brain serve as alternative specimens for alcohol analysis in post-mortem cases where blood is unavailable or contaminated. A method was developed using headspace gas chromatography with flame ionization detection (HS-GC-FID) for the detection and quantification of ethanol, acetone, isopropanol, methanol and n-propanol in brain tissue specimens.
View Article and Find Full Text PDFA two-step, one-flask reaction of pyrrole with pentafluorobenzaldehyde and acetone was investigated to determine the potential for a streamlined synthesis of a phlorin and/or 5-isocorrole as an alternative to stepwise, dipyrromethanecarbinol routes. Analytical-scale reactions were performed examining the effect of reactant concentration, reactant ratio, acid catalyst (TFA or BF3·OEt2), concentration of acid catalyst, oxidant quantity, and reaction time on the distribution of phlorin and 5-isocorrole as well as three additional porphyrinoids (porphodimethene, porphyrin, and corrole). Phlorin was observed ubiquitously in yields up to 20-26%, whereas 5-isocorrole was not detected.
View Article and Find Full Text PDF