Publications by authors named "Hao-Hao Lyu"

We examined the effects of biochar and urease inhibitors/nitrification inhibitors on nitrification process, ammonia and NO emission in subtropical soil, and determined the best combination of biochar with nitrification and urease inhibitors. This work could provide a theoretical basis for the mitigation of the negative environmental risk caused by reactive nitrogen gas in the application of nitrogen fertilizer. A indoor aerobic culture test was conducted with seven treatments [urea+biochar (NB), urea+nitrification inhibitor (N+NI), urea+urease inhibitor (N+UI), urea+nitrification inhibitor+urease inhibitor (N+NIUI), urea+nitrification inhibitor+biochar (NB+NI), urea+urease inhibitor+biochar (NB+UI), urea+nitrification inhibitor+urease inhibitor+biochar (NB+NIUI)] and urea (N) as the control.

View Article and Find Full Text PDF

Reducing soil ammonia volatilization is one of the key ways to reduce soil nitrogen loss and improve nitrogen utilization efficiency in farmlands. Biochar has unique physico-chemical pro-perties, which can change soil physical and chemical properties, affect soil nitrogen cycle, and affect ammonia volatilization in farmland soil. Firstly, we reviewed the ammonia volatilization process and its influencing factors (climatic condition, soil environment, and fertilization management, .

View Article and Find Full Text PDF

Biochar, with high degree of carbon stability, is considered as a kind of carbon sequestration material that can effectively alleviate the greenhouse effect. It is of great significance for carbon sequestration and mitigation to develop biochar with high carbon retention and stability. Mineral modification can regulate the stability of biochar.

View Article and Find Full Text PDF

A field experiment was conducted to examine the effects on soil fertility and enzyme activities in paddy field after six years of one-split rice straw-derived biochar [0 (BC), 7.5(BC), 15(BC), 22.5(BC) t·hm] and rice straw (3.

View Article and Find Full Text PDF

In this study, biochars (BC300, BC500 and BC700) were produced from silk waste through pyrolysis under oxygen-limited condition at 300, 500 and 700 ℃, respectively. The physicochemical properties of biochar were detected by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD) and specific surface area analyzer. The Cd adsorption capacities of biochars were investigated.

View Article and Find Full Text PDF

In recent years, studies on carbon sequestration of biochar in soil has been in spotlight owing to the specific characteristics of biochar such as strong carbon stability and well developed pore structure. However, whether biochar will ultimately increase soil carbon storage or promote soil carbon emissions when applied into the soil? This question remains controversial in current academic circles. Further research is required on priming effect of biochar on mineralization of native soil organic carbon and its mechanisms.

View Article and Find Full Text PDF

Controlling soil nutrient leaching in farmland ecosystems has been a hotspot in the research field of agricultural environment. Biochar has its unique physical and chemical properties, playing a significant role in enhancing soil carbon storage, improving soil quality and increasing crop yield. As a kind of new exogenous material, biochar has the potential in impacting soil nutrient cycling directly or indirectly, and has profound influences on soil nutrient leaching.

View Article and Find Full Text PDF