Plant oil-based vitrimer is an innovative and sustainable polymer with wide-ranging potential applications in the field of advanced materials. However, its restricted application is caused by the poor mechanical properties and the need for catalysts during preparation. Using renewable cardanol as the raw material, epoxy cardanol glycidyl ether (ECGE) with an end epoxide group was obtained by the clicking reaction and epoxidation reaction.
View Article and Find Full Text PDFCovalent organic framework (COF) membranes featuring uniform topological structures and devisable functions, show huge potential in water purification and molecular separation. Nevertheless, the inability of uniform COF membranes to be produced on an industrial scale and their nonenvironmentally friendly fabrication method are the bottleneck preventing their industrial applications. Herein, we report a new green and industrially adaptable scraping-assisted interfacial polymerization (SAIP) technique to fabricate scalable and uniform TpPa COF membranes.
View Article and Find Full Text PDFShanghai Kou Qiang Yi Xue
December 2022
Purpose: To investigate the influence of maxillary molars on the thickening of maxillary sinus mucosa by cone-beam CT (CBCT).
Methods: A total of 72 patients with periodontitis were included in the study and 137 cases of maxillary sinus were evaluated using CBCT for the following parameters: location, tooth, maximal mucosal thickness, alveolar bone loss, vertical intrabony pockets and minimal residual bone height. The maxillary sinus mucosal thickness ≥2 mm was defined as mucosal thickening.
Purpose: To evaluate the effect of keratinized tissue width (KTW) on periodontal regenerative surgery for the treatment of intrabony defects.
Methods: The clinical data of 14 patients (44 intrabony defect sites) treated with periodontal regenerative surgery were retrospectively analyzed at baseline and 2-year of follow-up. Forty four sites were divided into KTW2 mm group and KTW≤2 mm group according to KTW at baseline.
Room-temperature phosphorescence (RTP) materials with recognizable afterglow property have gained widespread attraction. Multicolor RTP has added benefits in multiplexed biological labeling, a zero background ratiometric sensor, a multicolor display, and other fields. However, it is a great challenge to prepare multicolor RTP from a single-component compound according to Kasha's rule.
View Article and Find Full Text PDFBiotransformation of soybean phytosterols into 9-hydroxy-4-androstene-3,17-dione (9-OHAD) by mycobacteria is the core step in the synthesis of adrenocortical hormone. However, the low permeability of the dense cell envelope largely inhibits the overall conversion efficiency of phytosterols. The antigen 85 (Ag85) complex encoded by , , and was proposed as the key factor in the combined catalysis of mycoloyl for producing mycolyl-arabinogalactan (m-AG) and trehalose dimycolate (TDM) in mycobacterial cell envelope.
View Article and Find Full Text PDFThe conversion of low value-added phytosterols into 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) by mycobacteria is an important step in the steroid pharmaceutical industry. However, the highly dense cell envelope with extremely low permeability largely affects the overall transformation efficiency. Here, we preliminarily located the key gene embC required for the synthesis of lipoarabinomannan from lipomannan in Mycobacterium neoaurum.
View Article and Find Full Text PDFBackground: The bioconversion of phytosterols into high value-added steroidal intermediates, including the 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), is the cornerstone in steroid pharmaceutical industry. However, the low transportation efficiency of hydrophobic substrates into mycobacterial cells severely limits the transformation. In this study, a robust and stable modification of the cell wall in M.
View Article and Find Full Text PDFThe conversion of sterols to steroid synthons by engineered mycobacteria comprises one of the basic ways for the production of steroid medications in the pharmaceutical industry. Here, we revealed that high amounts of reactive oxygen species (ROS) generate during the conversion process of sterols, which impairs the cell viability of mycobacterial cells and thus hinders the conversion of sterols to steroid synthons. Accordingly, the endogenous antioxidants for detoxifying ROS in mycobacteria, ROS scavenging enzymes and low molecular weight thiols, were examined.
View Article and Find Full Text PDFSome species of mycobacteria have been modified to transform sterols to valuable steroid synthons. The unique cell wall of mycobacteria has been recognized as an important organelle to absorb sterols. Some cell wall inhibitors (e.
View Article and Find Full Text PDFTwo zinc-diphosphonates formed from extended dipyridine units di-3,6-(4'-pyridyl)-1,2,4,5-tetrazine (dipytz) and 1,4-di(pyridine-4-yl)benzene (pbyb), [H2-Hdpt][Zn3(HEDP)2(H2O)]·2H2O (1) and [Zn2(HEDP)(pbyb)0.5(H2O)]·H2O (2) were solvothermally prepared (HEDP = 1-hydroxyethylidenediphosphonate, Hdpt = 1H-3,5-bis(4-pyridyl)-1,2,4-triazole). Compound 1 exhibits an anionic Zn-HEDP layer with protonated dipyridine fragments as the template.
View Article and Find Full Text PDFMicrocystins (MCs) are produced by certain bloom-forming cyanobacteria that can induce toxicity in various organs, including renal toxicity, reproductive toxicity, cardiotoxicity, and immunosuppressive effects. It has been a significant global environmental issue due to its harm to the aquatic environment and human health. Numerous investigators have demonstrated that MC exposure can induce a widespread epidemic of enterogastritis with symptoms similar to food poisoning in areas close to lakes.
View Article and Find Full Text PDF3-Ketosteroid 9α-hydroxylase (Ksh) consists of a terminal oxygenase (KshA) and a ferredoxin reductase and is indispensable in the cleavage of steroid nucleus in microorganisms. The activities of Kshs are crucial factors in determining the yield and distribution of products in the biotechnological transformation of sterols in industrial applications. In this study, two KshA homologues, KshA1 and KshA2, were characterized and further engineered in a sterol-digesting strain, ATCC 25795, to construct androstenone-producing strains.
View Article and Find Full Text PDFTwo isostructural lanthanide (Ln) hybrid complexes co-bridged by organic oxalate and inorganic hypophosphite, [Ln(oxa)(HPO)(HO)] (oxa = oxalate; Ln = Gd (1), Dy (2)), were solvothermally prepared with the goal of elucidating the role of a hybrid framework in the generation of novel molecular magnetic materials. The title compounds feature a two dimensional (2D) hybrid layer. The Ln ions are octa-coordinated with distorted square antiprism geometry.
View Article and Find Full Text PDFBackground: The strategy of modifying the sterol catabolism pathway in mycobacteria has been adopted to produce steroidal pharmaceutical intermediates, such as 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), which is used to synthesize various steroids in the industry. However, the productivity is not desirable due to some inherent problems, including the unsatisfactory uptake rate and the low metabolic efficiency of sterols. The compact cell envelope of mycobacteria is a main barrier for the uptake of sterols.
View Article and Find Full Text PDF9α-Hydroxy-4-androstene-3,17-dione (9-OHAD) is a valuable steroid pharmaceutical intermediate which can be produced by the conversion of soybean phytosterols in mycobacteria. However, the unsatisfactory productivity and conversion efficiency of engineered mycobacterial strains hinder their industrial applications. Here, a sigma factor D (sigD) was investigated due to its dramatic downregulation during the conversion of phytosterols to 9-OHAD.
View Article and Find Full Text PDFThe catabolism of sterols in mycobacteria is highly important due to its close relevance in the pathogenesis of pathogenic strains and the biotechnological applications of nonpathogenic strains for steroid synthesis. However, some key metabolic steps remain unknown. In this study, the hsd4A gene from Mycobacterium neoaurum ATCC 25795 was investigated.
View Article and Find Full Text PDF