Background: Liver fibrosis is an outcome of restoring process in chronic liver injury. Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammatory potential which makes them suitable for treating liver fibrosis. This study aimed to explore the effect and mechanism of hAMSCs on liver fibrosis.
View Article and Find Full Text PDFStudies showed that the increase of myeloid-derived suppressor cells (MDSCs) in tumour microenvironment is closely related to the resistant treatment and poor prognosis of metastatic breast cancer. However, the effect of tumour-derived exosomes on MDSCs and its mechanism are not clear. Here, we reported that breast cancer cells (4T1)-secreted exosomes (BCC-Ex) were able to differentiate bone marrow cells into MDSCs and significantly inhibited the proliferation of T lymphocytes to provide an immunosuppressive microenvironment for cancer cells in vivo and in vitro.
View Article and Find Full Text PDFStem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells.
View Article and Find Full Text PDF