Soft conductive gels are essential for epidermal electronics but often face challenges when interfacing with uneven surfaces or areas with extensive hair, especially under mechanical stress. In this study, we employed the concept of liquid-to-solid transformation to enhance integration at biointerfaces and designed an in-situ biogel capable of rapidly transitioning between liquid and solid states within 3 min via a temperature switch. The biogel features a semi-interpenetrating polymer network design and dual conduction pathways, resulting in high tensile strength (~1-3 MPa), a skin-compatible modulus (~0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
We report the development of an amplification-free nucleic acid assay using lateral flow test strips. M13mp18 nanoscaffold signal amplification permitted the visual detection of H1N1 RNA in 20 min. M13mp18 nanoscaffold supported a set of backbone, variable, detection, and modified oligonucleotides.
View Article and Find Full Text PDFUnlabelled: Autophagy is a cellular self-defense mechanism by which cells can kill invading pathogenic microorganisms and increase the presentation of components of pathogens as antigens. Contrarily, pathogens can utilize autophagy to enhance their own replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP6 can interact with ATPase proton pump component to inhibit lysosomal acidification, which was implicated in the autophagy process.
View Article and Find Full Text PDFThe prevalence and spread of antibiotic resistance genes (ARGs) have been a significant concern for global public health in recent years. Small rural watersheds are the smallest units of factor mobility for agricultural production in China, and their ARG profiles are the best scale of the contamination status, but the mapping and the distribution and diffusion of ARGs in the water and soil of small rural watersheds are inadequate. In this study, based on microbial metagenomics, we invested prevalence maps of 209 ARGs corresponding to typical commonly used antibiotics (including multidrug, aminoglycoside, macrolide-lincosamide-streptogramin B (MLSB), and β-Lactamase) in water and soil in different agricultural types, as well as within water-soil interfaces in small rural watersheds in Southwest China.
View Article and Find Full Text PDFAlthough sediment dredging is a widely employed water management and restoration technique for the removal of internal nitrogen (N), the long-term effects of dredging on N transformation in dredged rivers remain largely undetermined. In this study, we investigated the effects of dredging on N transformation processes spanning three years at ten sites in the purple-soil watershed within the middle reaches of the Fu River Basin. We combined isotopic and molecular techniques to provide novel insights into the interactions associated with microbial utilization capacities between sediment and river water before, during, and after dredging.
View Article and Find Full Text PDFAn electrochemical biosensor has been developed for detection of Escherichia coli O157 by integrating lateral flow with screen-printed electrodes. The screen-printed electrodes were attached under the lateral flow detection line, and organic-inorganic nanoflowers prepared from E. coli O157-specific antibodies as an organic component were attached to the lateral flow detection line.
View Article and Find Full Text PDF3D-printed bioceramic scaffolds offer great potential for bone tissue engineering (BTE) but their inherent brittleness and reduced mechanical properties at high porosities can easily result in catastrophic fractures. Herein, this study presents a hierarchical hydrogel impregnation strategy, incorporating poly(vinyl alcohol) (PVA) hydrogel into the macro- and micropores of bioceramic scaffolds and synergistically reinforcing it via freeze-casting assisted solution substitution (FASS) in a tannic acid (TA)-glycerol solution. By effectively mitigating catastrophic brittle failures, the hydrogel-impregnated scaffolds showcase three- and 100-fold enhancement in mechanical energy absorption under compression (5.
View Article and Find Full Text PDFHerein, we constructed a fluorescence biosensor for the ultra-sensitive analysis of microRNAs (miRNAs) by combining DNA hairpins transition triggered strand displacement amplification (DHT-SDA) with primer exchange reaction (PER). Target miRNA initiated DHT-SDA to facilitate the generation of multiple single-stranded DNA (ssDNA) as PER primer, which was extended into a long ssDNA. The biosensor is successfully utilized in detecting miRNAs with high sensitivity (limit of detection for miRNA-21 was 58 fM) and a good linear relationship between 100 nM and 100 fM.
View Article and Find Full Text PDFWe propose a sensitive H1N1 virus fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies. Products are generated via the hybridization of single-stranded DNA (ssDNA) probes containing T7 promoter and crRNA templates to a target RNA sequence using SplintR ligase. This generates large crRNA quantities in the presence of T7 RNA polymerase.
View Article and Find Full Text PDFEnergy management methods (EMMs) utilizing sensing, communication, and networking technologies appear to be one of the most promising directions for energy saving and environmental protection of fuel cell vehicles (FCVs). In real-world driving situations, EMMs based on driving cycle information are critical for FCVs and have been extensively studied. The collection and processing of driving cycle information is a fundamental and critical work that cannot be separated from sensors, global positioning system (GPS), vehicle-to-vehicle (V2V), vehicle-to-everything (V2X), intelligent transportation system (ITS) and some processing algorithms.
View Article and Find Full Text PDFNanofiber is the critical building block for many biological systems to perform various functions. Artificial assembly of molecules into nanofibers in a controllable and reversible manner will create "smart" functions to mimic those of their natural analogues and fabricate new functional materials, but remains an open challenge especially for nature macromolecules. Herein, the controllable and reversible assembly of nanofiber (CSNF) from natural macromolecules with oppositely charged groups are successfully realized by protonation and deprotonation of charged groups.
View Article and Find Full Text PDFThe development of energy saving and new energy vehicles is an important technology path to reduce carbon emissions for the transportation industry. To quantitatively predict the life cycle carbon emissions of energy saving and new energy vehicles, this study used the life cycle assessment method and selected the fuel economy level, lightweight level, carbon emission factor of electricity structure, and carbon emission factor of hydrogen production as key performance parameters to establish inventories of internal combustion engine vehicles (ICEV), mild hybrid electrical vehicles (MHEV), heavy hybrid electrical vehicles (HEV), battery electrical vehicles (BEV), and fuel cell vehicles (FCV) based on automotive-related policy and technical routes. The sensitivity of carbon emission factors of electricity structure and different hydrogen production methods were analyzed and discussed.
View Article and Find Full Text PDFCarbohydr Polym
January 2023
Nanocelluloses, derived from various plants or specific bacteria, represent the renewable and sophisticated nano building blocks for emerging functional materials. Especially, the assembly of nanocelluloses as fibrous materials can mimic the structural organization of their natural counterparts to integrate various functions, thus holding great promise for potential applications in various fields, such as electrical device, fire retardance, sensing, medical antibiosis, and drug release. Due to the advantages of nanocelluloses, a variety of fibrous materials have been fabricated with the assistance of advanced techniques, and their applications have attracted great interest in the past decade.
View Article and Find Full Text PDFIntroduction: Promoting crop growth and regulating denitrification process are two main ways to reduce soil NO emissions in agricultural systems. However, how biochar and arbuscular mycorrhizal fungi (AMF) can regulate crop growth and denitrification in soils with different phosphorus (P) supplies to influence NO emission remains largely unknown.
Method: Here, an eight-week greenhouse and one-year field experiments biochar and/or AMF (only in greenhouse experiment) additions under low and high P environments were conducted to characterize the effects on wheat (Triticum aestivum L.
The specificity and sensitivity of microRNA (miRNA) detection play a vital role in the early diagnosis of cancer and the treatment of various diseases. Here, we constructed a fluorescent biosensor based on click chemistry-terminal deoxynucleotidyl transferase (ccTdT) combined with the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas)12a cascade amplification system to achieve ultrasensitive miRNA-21 detection. Target miRNA-21 was employed as a template for click chemistry ligation of two nucleic acid probes, the product of which can be combined with magnetic microbeads (MBs).
View Article and Find Full Text PDFThis study provides proof of concept of a colorimetric biosensor for influenza H1N1 virus assay based on the CRISPR/Cas13a system and hybridization chain reaction (HCR). Target RNA of influenza H1N1 virus activated the trans-cleavage activity of Cas13a, which cleaved the special RNA sequence (-UUU-) of the probe, further initiating HCR to copiously generate G-rich DNA. Abundant G-quadruplex/hemin was formed in the presence of hemin, thus catalyzing a colorimetric reaction.
View Article and Find Full Text PDFThe oxygen reduction reaction (ORR) is one of the crucial energy conversion reactions in proton exchange membrane fuel cells (PEMFCs). Low price and remarkable catalyst performance are very important for the cathode ORR of PEMFCs. Among the various explored ORR catalysts, non-noble metals (transition metal: Fe, Co, Mn, etc.
View Article and Find Full Text PDFA photonic instantaneous frequency measurement receiver based on frequency to optical power mapping is proposed and experimentally demonstrated. One channel of a dense wavelength-division multiplexer (DWDM) is used as an optical filter to establish a power ratio function related to the frequency of the microwave signal. Different from most optical filters, the DWDM filter features smooth and quasilinear roll-off over a wide bandwidth.
View Article and Find Full Text PDFWe designed two near-infrared (NIR) lanthanide complexes [(L) -Nd(NO ) ] (L=TPE -BPY for 1, TPE-BPY for 2) by employing aggregation-induced emission (AIE)-active tetraphenylethylene (TPE) derivatives as sensitizers, which possessed matched energy to Nd , prevented competitive deactivation under aggregation, even shifted the excitation window toward 600 nm by twisted intramolecular charge transfer. Furthermore, benefiting from the 4 f electron shielding effect and antenna effect, the enhanced excitation energies of the AIE-active sensitizers by structural rigidification transferred into the inert Nd excited state through LMCT, affording the first aggregation-induced phosphorescence enhancement (AIPE)-active discrete NIR-emitting lanthanide complexes. As 1 equipped with more AIE-active TPE than 2, L→Nd energy transfer efficiency in the former was higher than that in the latter under the same conditions.
View Article and Find Full Text PDFHere, we describe a simple, sensitive, and enzyme-free method for visual point-of-care detection of 16S rRNA of Escherichia coli O157:H7 based on an isothermal strand displacement-hybrid chain reaction (ISD-HCR) and lateral flow strip (LFS). In this study, the secondary structure of 16S rRNA of E. coli O157:H7 was unwound by two helper oligonucleotides to expose the single-strand-specific nucleic acid sequence.
View Article and Find Full Text PDFA novel electrochemical biosensor for detecting pathogenic bacteria was designed based on specific magnetic separation and highly sensitive click chemistry. Instead of enzyme-antibody conjugates, organic-inorganic hybrid nanoflowers [concanavalin A (Con A)-Cu3(PO4)2] were used as the signal probe of the sandwich structure. The inorganic component, the copper ions of hybrid nanoflowers, was first used to amplify signal transduction for enzyme-free detection.
View Article and Find Full Text PDFAttaching AIE-active L1 ([1,1':2',1'':4'',1'''-quaterphenyl]-2-yldiphenylphosphane) to AuCl, shortened the distances of P-C bonds to promote electron cloud overlap between Au and L1, affords 1 (L1AuCl) with aggregation-induced phosphorescence enhancement (AIPE) activity by LMCT transitions. Then substituting the coplanar L2 (9-ethynylanthracene) for the Cl in 1 providing 2, switches the luminescence to aggregation-caused quenching (ACQ) activity. Furthermore, we restore the performance from ACQ to AIPE by metathesis reactions to transfer 2 into 1.
View Article and Find Full Text PDF