Rolling bearings play a crucial role in industrial equipment, and their failure is highly likely to cause a series of serious consequences. Traditional deep learning-based bearing fault diagnosis algorithms rely on large amounts of training data; training and inference processes consume significant computational resources. Thus, developing a lightweight and suitable fault diagnosis algorithm for small samples is particularly crucial.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.
View Article and Find Full Text PDFNaturally widespread ferrihydrite is unstable and often coexists with complex ions, such as the heavy metal ion Pb(II). Ferrihydrite could fix Pb(II) by precipitation and hydroxyl adsorption, but release Pb(II) with mineral aging. Gallic acid plays an important role in influencing the geochemical behavior of ferrihydrite-Pb, and anoxia is one of the factors influencing the transformation of mineral.
View Article and Find Full Text PDFThe Conference 2024 provides a platform to promote the development of an innovative scientific research ecosystem for microbiome and One Health. The four key components - Technology, Research (Biology), Academic journals, and Social media - form a synergistic ecosystem. Advanced technologies drive biological research, which generates novel insights that are disseminated through academic journals.
View Article and Find Full Text PDFPost-traumatic stress disorder (PTSD) is characterized by anxiety, excessive fear, distress, and weakness as symptoms of a psychiatric disorder. However, the mechanism associated with its symptoms such as anxiety-like behaviors is not well understood. It is aimed to investigate the underlying mechanisms of the medial septum (MS)-medial habenula (MHb) neural circuit modulating the anxiety-like behaviors of PTSD mice through in vivo fiber photometry recording, optogenetics, behavioral testing by open-field and elevated plus maze, fluorescent gold retrograde tracer technology, and viral tracer technology.
View Article and Find Full Text PDFProgrammed cell death protein ligand-1 (PD-L1) and major histocompatibility complex I (MHC-I) are key molecules related to tumor immune evasion and resistance to programmed cell death protein 1 (PD-1)/PD-L1 blockade. Here, we demonstrated that the upregulation of all miRNAs in the miR-23a/27a/24 - 2 cluster was correlated with poor survival, immune evasion and PD-1/PD-L1 blockade resistance in patients with non-small cell lung cancer (NSCLC). The overexpression of all miRNAs in the miR-23a/27a/24 - 2 cluster upregulated PD-L1 expression by targeting Cbl proto-oncogene B (CBLB) and downregulated MHC-I expression by increasing the level of eukaryotic initiation factor 3B (eIF3B) via the targeting of microphthalmia-associated transcription factor (MITF).
View Article and Find Full Text PDFIntroduction: The Steinberg classification system is commonly used by orthopedic surgeons to stage the severity of patients with osteonecrosis of the femoral head (ONFH), and it includes mild, moderate, and severe grading of each stage based on the area of the femoral head affected. However, clinicians mostly grade approximately by visual assessment or not at all. To accurately distinguish the mild, moderate, or severe grade of early stage ONFH, we propose a convolutional neural network (CNN) based on magnetic resonance imaging (MRI) of the hip joint of patients to accurately grade and aid diagnosis of ONFH.
View Article and Find Full Text PDFWhile tumor organoids have revolutionized cancer research by recapitulating the cellular architecture and behaviors of real tumors in vitro, their lack of functional vasculature hinders their attainment of full physiological capabilities. Current efforts to vascularize organoids are struggling to achieve well-defined vascular networks, mimicking the intricate hierarchy observed in vivo, which restricts the physiological relevance particularly for studying tumor progression and response to therapies targeting the tumor vasculature. An innovative vascularized patient-derived tumor organoids (PDTOs)-on-a-chip with hierarchical, tumor-specific microvasculature is presented, providing a versatile platform to explore tumor-vascular dynamics and antivascular drug efficacy.
View Article and Find Full Text PDFPurpose: This study aimed to investigate the safety, feasibility, and possible advantages of the cystic plate approach during laparoscopic cholecystectomy in a retrospective cohort of surgical patients.
Methods: We summarized the key points of the technical approach, retrospectively analyzed the clinical outcomes of 156 patients in the cystic plate approach group from July 2018 to July 2023, and compared the findings with those of 173 cases in the routine approach group from the same period.
Results: We observed no differences in the average stone size, operation time, postoperative hospital stay, conversion rate, complications, or Visual Analog Scale pain scores on the second day of surgery between the two groups ( = 0.
The generation of three-dimensional (3D) molecules based on target structures represents a cutting-edge challenge in drug discovery. Many existing approaches often produce molecules with invalid configurations, unphysical conformations, suboptimal drug-like qualities, limited synthesizability, and require extensive generation times. To address these challenges, we present 3DSMILES-GPT, a fully language-model-driven framework for 3D molecular generation that utilizes tokens exclusively.
View Article and Find Full Text PDFDespite advancements in cancer treatment through surgery and drugs, hepatocellular carcinoma (HCC) remains a significant challenge, as reflected by its low survival rates. The mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in regulating the cell cycle, proliferation, apoptosis, and metabolism. Notably, dysregulation leading to the activation of the mTOR signaling pathway is common in HCC, making it a key focus for in-depth research and a target for current therapeutic strategies.
View Article and Find Full Text PDFBackground: In recent years, the survival rate of preterm infants has significantly improved due to the application of pulmonary surfactant (PS) and advancements in lung-protective mechanical ventilation strategies. However, this has been accompanied by an increased incidence of complications, particularly lung diseases triggered by elevated reactive oxygen species (ROS) induced by hyperoxia. The primary mechanism of hyperoxic lung injury (HLI) involves the excessive production of ROS within cells and the aggregation of inflammatory cells.
View Article and Find Full Text PDFIntroduction: We undertook an in-depth investigation of the data pertaining to pancreatic adenocarcinoma (PAAD) to identify potential targets for the development of precision therapies.
Material And Methods: The construction of a protein-protein interaction (PPI) network was based on overlapping differentially expressed genes (DEGs) identified in the GSE16515, GSE32676, and GSE125158 datasets. A subsequent bioinformatic analysis was performed on the interconnected genes within the PPI network, leading to the identification of the central gene, CENPN.
Acute lung injury (ALI) is a devastating clinical syndrome without effective therapy. Celastrol, as a natural anti-inflammatory compound, has showed therapeutic potential against inflammatory diseases. In this study, we have investigated the potential effect of Celastrol on lipopolysaccharide (LPS)-induced ALI.
View Article and Find Full Text PDFThe naturally sluggish redox kinetics and limited utilization associated with the sulfur conversion in Zn/S electrochemistry hinder its real application. Herein, we report an phase reconstruction strategy that activates the catalytic activity of vanadium oxides for invoking redox-catalysis to manipulate reversible sulfur conversion. It was identified that the VO@C/S precursor derived from metal organic frameworks could be transformed into VO ·HO@C/S by a facile electrochemical induction process.
View Article and Find Full Text PDFOwing to their unique and tunable optoelectronic and magnetic properties, organic conjugated radicals have great potential in information storage and communication through modulating the molecular spin states. However, few electronic/spintronic devices based on these materials have been reported to date due to various intrinsic constraints such as poor material stability and processability. In this work, we have synthesized a stable singlet ground state organic conjugated diradical 5,7-dimesityl--indaceno[1,2-:7,6-']dipyridine (mNIF) with narrow band gap (1.
View Article and Find Full Text PDFWater oxidation presents a promising avenue for hydrogen peroxide (HO) production. However, the reliance on alkaline bicarbonate electrolytes as an intermediate has limitations, such as HO decomposition and a narrow pH effectiveness range (7-9), restricting its utility across wider pH ranges. This study unveils a crystal OH mediating pathway that stabilizes SOOH* as a crucial intermediate.
View Article and Find Full Text PDFObjective: This study aimed to examine the reliability of death and medication records among individuals diagnosed with schizophrenia between two widely-used electronic health record (EHR) databases in Hong Kong: the Clinical Management System (CMS) and the Clinical Data Analysis and Reporting System (CDARS).
Methods: A cohort of patients with schizophrenia-spectrum disorders enrolled in public psychiatric services in Hong Kong between 1998 and 2003 was identified from the CMS. The unique IDs, vital status, and clozapine prescription information of these patients were extracted from both the CMS and CDARS.
J Geophys Res Oceans
November 2024
The synthesis of efficient and stable peroxymonosulfate (PMS) catalysts by doping naturally degradable and functional group-rich chitosan (CS) with nonmetallic atoms remains challenging. In this study, an environmentally friendly electron-rich S-doped CS ferrocarbon material (Fe-S-CN) was synthesized via the sol-gel method, and the resulting material exhibited excellent catalytic activity (up to 98.6 % diclofenac sodium (DCF) removal in 5 min), wide pH applicability, environmental tolerance and renewability.
View Article and Find Full Text PDFIntroduction: Bronchoscopy is of great significance in diagnosing and treating respiratory illness. Using deep learning, a diagnostic system for bronchoscopy images can improve the accuracy of tracheal, bronchial, and pulmonary disease diagnoses for physicians and ensure timely pathological or etiological examinations for patients. Improving the diagnostic accuracy of the algorithms remains the key to this technology.
View Article and Find Full Text PDFNavigating through soft and highly confined environments is crucial for bacteria moving within living organisms' tissues, yet this topic has been less explored. In our study, we experimentally harnessed the unique biconcave geometry of red blood cells (RBCs) to enable real-time visualization of swimming interacting with soft RBCs. Our findings show that RBCs adhering to a rigid surface can enclose spaces comparable to the size of bacteria, effectively entrapping them.
View Article and Find Full Text PDF