Bioresour Bioprocess
September 2021
Animal cells are used in the manufacturing of complex biotherapeutic products since the 1980s. From its initial uses in biological research to its current importance in the biopharmaceutical industry, many types of culture media were developed: from serum-based media to serum-free to protein-free chemically defined media. The cultivation of animal cells economically has become the ultimate goal in the field of biomanufacturing.
View Article and Find Full Text PDFThe global increase in autoimmunity, together with the emerging autoimmune-related side effects of cancer immunotherapy, have furthered a need for understanding of immune tolerance and activation. Systemic lupus erythematosus (SLE) is the archetypical autoimmune disease, affecting multiple organs, and tissues. Studying SLE creates knowledge relevant not just for autoimmunity, but the immune system in general.
View Article and Find Full Text PDFObjective: To determine whether latency can be established and reversed in both proliferating and nonproliferating CD4+ T cells in the same model in vitro.
Methods: Activated CD4+ T cells were infected with either a nonreplication competent, luciferase reporter virus or wild-type full-length enhanced green fluorescent protein (EGFP) reporter virus and cultured for 12 days. The cells were then sorted by flow cytometry to obtain two distinct T-cell populations that did not express the T-cell activation markers, CD69, CD25 and human leukocyte antigen (HLA)-DR: CD69CD25HLA-DR small cells (nonblasts) that had not proliferated in vitro following mitogen stimulation and CD69CD25HLA-DR large cells (which we here call transitional blasts) that had proliferated.
Objective: Toll-like receptors (TLRs) 7 and 9 are important innate signaling molecules with opposing roles in the development and progression of systemic lupus erythematosus (SLE). While multiple studies support the notion of a dependency on TLR-7 for disease development, genetic ablation of TLR-9 results in severe disease with glomerulonephritis (GN) by a largely unknown mechanism. This study was undertaken to examine the suppressive role of TLR-9 in the development of severe lupus in a mouse model.
View Article and Find Full Text PDFHIV infection requires lifelong antiretroviral therapy because of the persistence of latently infected CD4 T cells. The induction of virus expression from latently infected cells occurs following T cell receptor (TCR) activation, but not all latently infected cells respond to TCR stimulation. We compared two models of latently infected cells using an enhanced green fluorescent protein (EGFP) reporter virus to infect CCL19-treated resting CD4 (rCD4) T cells (preactivation latency) or activated CD4 T cells that returned to a resting state (postactivation latency).
View Article and Find Full Text PDFDuring unresolved infections, some viruses escape immunological control and establish a persistant reservoir in certain cell types, such as human immunodeficiency virus (HIV), which persists in follicular helper T cells (TFH cells), and Epstein-Barr virus (EBV), which persists in B cells. Here we identified a specialized group of cytotoxic T cells (TC cells) that expressed the chemokine receptor CXCR5, selectively entered B cell follicles and eradicated infected TFH cells and B cells. The differentiation of these cells, which we have called 'follicular cytotoxic T cells' (TFC cells), required the transcription factors Bcl6, E2A and TCF-1 but was inhibited by the transcriptional regulators Blimp1, Id2 and Id3.
View Article and Find Full Text PDFBackground: Eradication of HIV cannot be achieved with combination antiretroviral therapy (cART) because of the persistence of long-lived latently infected resting memory CD4(+) T cells. We previously reported that HIV latency could be established in resting CD4(+) T cells in the presence of the chemokine CCL19. To define how CCL19 facilitated the establishment of latent HIV infection, the role of chemokine receptor signalling was explored.
View Article and Find Full Text PDFDespite the success of combination antiretroviral therapy (cART), HIV persists in long lived latently infected cells in the blood and tissue, and treatment is required lifelong. Recent clinical studies have trialed latency-reversing agents (LRA) as a method to eliminate latently infected cells; however, the effects of LRA on the central nervous system (CNS), a well-known site of virus persistence on cART, are unknown. In this study, we evaluated the toxicity and potency of a panel of commonly used and well-known LRA (panobinostat, romidepsin, vorinostat, chaetocin, disulfiram, hexamethylene bisacetamide [HMBA], and JQ-1) in primary fetal astrocytes (PFA) as well as monocyte-derived macrophages as a cellular model for brain perivascular macrophages.
View Article and Find Full Text PDFHistone deacetylase inhibitors (HDACi) can induce human immunodeficiency virus (HIV) transcription from the HIV long terminal repeat (LTR). However, ex vivo and in vivo responses to HDACi are variable and the activity of HDACi in cells other than T-cells have not been well characterised. Here, we developed a novel assay to determine the activity of HDACi on patient-derived HIV LTRs in different cell types.
View Article and Find Full Text PDFObjectives: To compare the potency, toxicity and mechanism of action of multiple histone deacetylase inhibitors (HDACi) in activating HIV production from latency.
Design: In-vitro analysis of HDACi in a primary T-cell model of HIV latency and latently infected cell lines.
Methods: Latently infected chemokine ligand 19 (CCL19)-treated CD4⁺ T cells and the latently infected cell lines ACH2 and J-Lat were treated with a panel of HDACi, including entinostat, vorinostat, panonbinostat and MCT3.
The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells.
View Article and Find Full Text PDFBackground: Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species have been implicated in the initiation of gastrointestinal diseases. In the present study, we investigated the interaction between these bacteria and the human intestinal epithelium and immune cells.
Methods: The ability of C.
The leukocyte immunoglobulin-like receptor (LILR) B4 belongs to a family of cell surface receptors that possesses cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). LILRB4 is believed to down-regulate activation signals mediated by non-receptor tyrosine kinase cascades through the recruitment of SHP-1. However, the exact mechanisms of LILRB4-mediated inhibition are not fully elucidated.
View Article and Find Full Text PDF