Structural dynamics of the polyethylenimine-DNA and poly(l-lysine)-DNA complexes (polyplexes) was studied by steady-state and time-resolved fluorescence spectroscopy using the fluorescence resonance energy transfer (FRET) technique. During the formation of the DNA polyplexes, the negative phosphate groups (P) of DNA are bound by the positive amine groups (N) of the polymer. At N/P ratio 2, nearly all of the DNA's P groups are bound by the polymer N groups: these complexes form the core of the polyplexes.
View Article and Find Full Text PDFElectrostatic polymer-DNA complexes (polyplexes) have been widely investigated for DNA delivery, and remarkable differences in transfection efficacy have been seen among the materials. For example, polyethyleneimine (PEI) mediates DNA transfection more effectively than poly(l-lysine) (PLL). Biophysical properties of the polyplexes may explain their different properties in gene delivery.
View Article and Find Full Text PDFThe surface plasmon resonance technique in combination with whole cell sensing is used for the first time for real-time label-free monitoring of nanoparticle cell uptake. The uptake kinetics of several types of nanoparticles relevant to drug delivery applications into HeLa cells is determined. The cell uptake of the nanoparticles is confirmed by confocal microscopy.
View Article and Find Full Text PDFThe mechanism of polyethylenimine-DNA and poly(L-lysine)-DNA complex formation at pH 5.2 and 7.4 was studied by a time-resolved spectroscopic method.
View Article and Find Full Text PDFAerosol flow reactor is used to generate solid-state nanoparticles in a one-step process that is based on drying of aerosol droplets in continuous flow. We investigated the applicability of aerosol flow reactor method to prepare solid state DNA nanoparticles. Precursor solutions of plasmid DNA with or without complexing agent (polyethylenimine), coating material (l-leucine) and mannitol (bulking material) were dispersed to nanosized droplets and instantly dried in laminar heat flow.
View Article and Find Full Text PDFBackground: Polyethylenimine (PEI) polyplexes mediate efficient gene transfer only at high +/- charge ratios at which free noncomplexed PEI is present. The excess of PEI gives polyplexes a positive surface charge that plays a role in polyplex binding on the cell membrane. Although positively charged PEI polyplexes are known to interact with anionic cell-surface glycosaminoglycans (GAGs), the exact role of free PEI in such interactions is unclear.
View Article and Find Full Text PDFA large number of different polymers have been developed and studied for application as DNA carriers for non-viral gene delivery, but the DNA binding properties are not understood. This study describes the efficiency of nanoparticle formation by time-resolved fluorescence measurements for poly(β-amino esters), cationic biodegradable polymers with DNA complexation and transfection capability. From the large library of poly(β-amino esters) ten polymers with different transfection efficacies were chosen for this study.
View Article and Find Full Text PDFPolyethylenimine (PEI) is a cationic DNA condensing polymer that facilitates gene transfer into the mammalian cells. The highest gene transfer with branched PEI is obtained at high nitrogen/phosphate (N/P) ratios with free PEI present. The small molecular weight PEI alone is not able to mediate DNA transfection.
View Article and Find Full Text PDFNonviral gene delivery has gained a lot of interest as a promising approach for gene therapy. Despite intensive studies and much progress the outcome of nonviral vectors has remained significantly weaker than that of viral vectors. A weak transfection efficiency of nonviral gene transfection is still limiting their in vivo use.
View Article and Find Full Text PDFPolyethylenimines (PEIs) and cationic liposomes are widely used for nonviral gene delivery. When PEIs have been used alone, the transfection efficiency has been higher for larger or linear than smaller or branched PEIs. We have reported previously that a combination of small PEIs and liposomes results in a potentiation of transfection efficiency in vitro.
View Article and Find Full Text PDF