Dysregulated biomolecular condensates, formed through multivalent interactions among proteins and nucleic acids, have been recently identified to drive tumorigenesis. In acute myeloid leukemia (AML), condensates driven by RNA-binding proteins alter transcriptional networks. Yang and colleagues performed a CRISPR screen and identified fibrillarin (FBL) as a new driver in AML leukemogenesis.
View Article and Find Full Text PDFTo gain insight into how ERG translocations cause prostate cancer, we performed single cell transcriptional profiling of an autochthonous mouse model at an early stage of disease initiation. Despite broad expression of ERG in all prostate epithelial cells, proliferation was enriched in a small, stem-like population with mixed-luminal basal identity (called intermediate cells). Through a series of lineage tracing and primary prostate tissue transplantation experiments, we find that tumor initiating activity resides in a subpopulation of basal cells that co-express the luminal genes and (called Basal) but not in the larger population of classical + luminal cells.
View Article and Find Full Text PDFStem cells regulate their self-renewal and differentiation fate outcomes through both symmetric and asymmetric divisions. mA RNA methylation controls symmetric commitment and inflammation of hematopoietic stem cells (HSCs) through unknown mechanisms. Here, we demonstrate that the nuclear speckle protein SON is an essential mA target required for murine HSC self-renewal, symmetric commitment, and inflammation control.
View Article and Find Full Text PDFChimeric antigen receptor T-cell (CAR T) therapy has produced remarkable clinical responses in B-cell neoplasms. However, many challenges limit this class of agents for the treatment of other cancer types, in particular the lack of tumor-selective antigens for solid tumors and other hematological malignancies, such as acute myeloid leukemia (AML), which may be addressed without significant risk of severe toxicities while providing sufficient abundance for efficient tumor suppression. One approach to overcome this hurdle is dual targeting by an antibody-T-cell receptor (AbTCR) and a chimeric costimulatory signaling receptor (CSR) to 2 different antigens, in which both antigens are found together on the cancer cells but not together on normal cells.
View Article and Find Full Text PDFThe identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone.
View Article and Find Full Text PDFTissue homeostasis is maintained after stress by engaging and activating the hematopoietic stem and progenitor compartments in the blood. Hematopoietic stem cells (HSCs) are essential for long-term repopulation after secondary transplantation. Here, using a conditional knockout mouse model, we revealed that the RNA-binding protein SYNCRIP is required for maintenance of blood homeostasis especially after regenerative stress due to defects in HSCs and progenitors.
View Article and Find Full Text PDFUnlabelled: The reprogramming of human acute myeloid leukemia (AML) cells into induced pluripotent stem cell (iPSC) lines could provide new faithful genetic models of AML, but is currently hindered by low success rates and uncertainty about whether iPSC-derived cells resemble their primary counterparts. Here we developed a reprogramming method tailored to cancer cells, with which we generated iPSCs from 15 patients representing all major genetic groups of AML. These AML-iPSCs retain genetic fidelity and produce transplantable hematopoietic cells with hallmark phenotypic leukemic features.
View Article and Find Full Text PDFTarget identification for chimeric antigen receptor (CAR) T-cell therapies remains challenging due to the limited repertoire of tumor-specific surface proteins. Intracellular proteins presented in the context of cell surface HLA provide a wide pool of potential antigens targetable through T-cell receptor mimic antibodies. Mass spectrometry (MS) of HLA ligands from 8 hematologic and nonhematologic cancer cell lines identified a shared, non-immunogenic, HLA-A*02-restricted ligand (ALNEQIARL) derived from the kinetochore-associated NDC80 gene.
View Article and Find Full Text PDFGlutathione (GSH) is a small-molecule thiol that is abundant in all eukaryotes and has key roles in oxidative metabolism. Mitochondria, as the major site of oxidative reactions, must maintain sufficient levels of GSH to perform protective and biosynthetic functions. GSH is synthesized exclusively in the cytosol, yet the molecular machinery involved in mitochondrial GSH import remains unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2021
The increasing complexity of different cell types revealed by single-cell analysis of tissues presents challenges in efficiently elucidating their functions. Here we show, using prostate as a model tissue, that primary organoids and freshly isolated epithelial cells can be CRISPR edited ex vivo using Cas9-sgRNA (guide RNA) ribotnucleoprotein complex technology, then orthotopically transferred in vivo into immunocompetent or immunodeficient mice to generate cancer models with phenotypes resembling those seen in traditional genetically engineered mouse models. Large intrachromosomal (∼2 Mb) or multigenic deletions can be engineered efficiently without the need for selection, including in isolated subpopulations to address cell-of-origin questions.
View Article and Find Full Text PDFN-Methyladenosine (mA) on mRNAs mediates different biological processes and its dysregulation contributes to tumorigenesis. How mA dictates its diverse molecular and cellular effects in leukemias remains unknown. We found that YTHDC1 is the essential mA reader in myeloid leukemia from a genome-wide CRISPR screen and that mA is required for YTHDC1 to undergo liquid-liquid phase separation and form nuclear YTHDC1-mA condensates (nYACs).
View Article and Find Full Text PDFIn this issue of Cell Stem Cell, Shen et al. (2020) and Wang et al. (2020) independently identify the essential function of mA demethylase ALKBH5 in maintaining myeloid leukemia stem cells.
View Article and Find Full Text PDFLeukemia stem cells (LSCs) are believed to have more distinct vulnerabilities than the bulk acute myeloid leukemia (AML) cells, but their rarity and the lack of universal markers for their prospective isolation hamper their study. We report that genetically clonal induced pluripotent stem cells (iPSCs) derived from an AML patient and characterized by exceptionally high engraftment potential give rise, upon hematopoietic differentiation, to a phenotypic hierarchy. Through fate-tracking experiments, xenotransplantation, and single-cell transcriptomics, we identify a cell fraction (iLSC) that can be isolated prospectively by means of adherent in vitro growth that resides on the apex of this hierarchy and fulfills the hallmark features of LSCs.
View Article and Find Full Text PDFIt is well documented that the rate of aging can be slowed, but it remains unclear to which extent aging-associated conditions can be reversed. How the interface of immunity and metabolism impinges upon the diabetes pandemic is largely unknown. Here, we show that NLRP3, a pattern recognition receptor, is modified by acetylation in macrophages and is deacetylated by SIRT2, an NAD-dependent deacetylase and a metabolic sensor.
View Article and Find Full Text PDFStem cells balance cellular fates through asymmetric and symmetric divisions in order to self-renew or to generate downstream progenitors. Symmetric commitment divisions in stem cells are required for rapid regeneration during tissue damage and stress. The control of symmetric commitment remains poorly defined.
View Article and Find Full Text PDFAging-associated defects in hematopoietic stem cells (HSCs) can manifest in their progeny, leading to aberrant activation of the NLRP3 inflammasome in macrophages and affecting distant tissues and organismal health span. Whether the NLRP3 inflammasome is aberrantly activated in HSCs during physiological aging is unknown. We show here that SIRT2, a cytosolic NAD-dependent deacetylase, is required for HSC maintenance and regenerative capacity at an old age by repressing the activation of the NLRP3 inflammasome in HSCs cell autonomously.
View Article and Find Full Text PDFThe mitochondrial unfolded protein response (UPR ), a cellular protective program that ensures proteostasis in the mitochondria, has recently emerged as a regulatory mechanism for adult stem cell maintenance that is conserved across tissues. Despite the emerging genetic evidence implicating the UPR in stem cell maintenance, the underlying molecular mechanism is unknown. While it has been speculated that the UPR is activated upon stem cell transition from quiescence to proliferation, the direct evidence is lacking.
View Article and Find Full Text PDFThe simplicity and effectiveness of calorie restriction (CR) in lifespan and healthspan extension have fascinated generations searching for the Fountain of Youth. CR reduces levels of oxidative stress and damage, which have been postulated in the free radical theory of aging as a major cause of aging and diseases of aging. This reduction has long been viewed as a result of passive slowing of metabolism.
View Article and Find Full Text PDFDeterioration of adult stem cells accounts for much of aging-associated compromised tissue maintenance. How stem cells maintain metabolic homeostasis remains elusive. Here, we identified a regulatory branch of the mitochondrial unfolded protein response (UPR(mt)), which is mediated by the interplay of SIRT7 and NRF1 and is coupled to cellular energy metabolism and proliferation.
View Article and Find Full Text PDFNonalcoholic fatty liver disease is the most common chronic liver disorder in developed countries. Its pathogenesis is poorly understood, and therapeutic options are limited. Here, we show that SIRT7, an NAD(+)-dependent H3K18Ac deacetylase, functions at chromatin to suppress ER stress and prevent the development of fatty liver disease.
View Article and Find Full Text PDFThe long-term efficacy and safety of electroconvulsive therapy (ECT) for refractory schizophrenia is rarely reported. We report the case of a 38-year-old female patient with refractory schizophrenia who was treated with ECT for 14 years (from 24 years of age). Case records of clinical treatment and laboratory tests are described and analyzed.
View Article and Find Full Text PDFFormaldehyde (FA) exposure is known to be toxic to central nervous system of mammals. In this paper, we evaluated the aggressive behavior after repetitive inhalative FA exposure to male SD rats, and explored the potential mechanism. The rats, ranging from 160 to 180 g, were randomly designated into the orchiectomized (ORX) group, the control and the inhalative FA treatment groups.
View Article and Find Full Text PDF