Publications by authors named "Hanzhen Yuan"

This article provides a full description of the mixed micelle formation process at a molecular level. The mechanism of mixed micelle formation in binary surfactant aqueous solution systems, ionic/nonionic mixed systems (12-2-12/TX-100, 14-2-14/TX-100, and SDS/TX-100), and ionic/ionic mixed systems (12-2-12/TTAB, 14-2-14/TTAB, and SDS/CTAB), in heavy water solutions was studied by (1)H NMR spectroscopy. The critical micellization concentrations of each individual component in the mixed surfactant solutions were gained by analyzing changes in chemical shift and intensities of resonance peaks.

View Article and Find Full Text PDF

The mechanism of micelle formation of surfactants sodium dodecyl sulfate (SDS), n-hexyldecyltrimethylammonium bromide (CTAB) and Triton X-100 (TX-100) in heavy water solutions was studied by 1H NMR (chemical shift and line shape) and NMR self-diffusion experiments. 1H NMR and self-diffusion experiments of these three surfactants show that their chemical shifts (delta) begin to change and resonance peaks begins to broaden with the increase in concentration significantly below their critical micelle concentrations (cmc's). At the same time, self-diffusion coefficients ( D) of the surfactant molecules decrease simultaneously as their concentrations increase.

View Article and Find Full Text PDF

The exchange kinetics of cationic gemini surfactants of the alkanediyl-alpha-omega-bis(tetradecyldimethylammonium bromide) type, with alkanediyl being 1,2-ethylene, 1,3-propylene, and 1,4-butylene, were investigated by 1H NMR, 2D COSY, and 2D EXSY experiments. In contrast to the conventional surfactants, a second set of well-resolved resonance peaks appeared in the 1H NMR spectra of these surfactants when their concentrations reached their critical concentrations. These two sets of resonance peaks originate from their monomers and micelles, which are proved by the correlation in the 2D COSY experiments and the cross polarization in the 2D NOESY spectra.

View Article and Find Full Text PDF

(1)H NMR chemical shift, spin-lattice relaxation time, spin-spin relaxation time, self-diffusion coefficient, and two-dimensional nuclear Overhauser enhancement (2D NOESY) measurements have been used to study the nonionic-ionic surfactant mixed micelles. Cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were used as the ionic surfactants and polyethylene glycol (23) lauryl ether (Brij-35) as the nonionic surfactant. The two systems are both with varying molar ratios of CTAB/Brij-35 (C/B) and SDS/Brij-35 (S/B) ranging from 0.

View Article and Find Full Text PDF

The title organo-molybdate derivatives are synthesized and their IR, 1H NMR spectra have been determined and the relations between the structures and the 1H NMR and IR parameters have been studied. The results indicate that the red shift of the IR frequency of Mo-O-Mo in [(n-Bu)4N]2[Mo2O5(OC10H6O)2] (complex I) takes place to compare with that in [(n-Bu)4N]2[Mo4O10 (OC10H6O)2(OCH3)2] (complex II) and lower filed shift of 1H NMR of the aromatic H atoms in complex II occurs as contrasted to that in the complex I. It is found also the organo-molybdate derivatives are very sensitive to the acidity of the chemical system.

View Article and Find Full Text PDF

The effect of acetonitrile (ACN) on the low-affinity interaction between human serum albumin (HSA) and ibuprofen (IBP) was studied using 1H-NMR techniques. Both chemical shift and relaxation measurements showed the addition of ACN to the solutions decreased the binding affinity of IBP to HSA and reduced the hydrophobic interaction between them. The self-diffusion coefficients of IBP were measured as a function of the drug concentration at different ACN concentrations.

View Article and Find Full Text PDF