Publications by authors named "Hanzhe Chen"

The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis.

View Article and Find Full Text PDF

This study aimed to investigate the moderating role of aerobic fitness on the effect of acute exercise on improving executive function from both behavioral and cerebral aspects. Thirty-four young individuals with motor skills were divided into high- and low-fitness groups based on their maximal oxygen uptake. Both groups completed 30 min of moderate-intensity aerobic exercise on a power bike.

View Article and Find Full Text PDF

Emerging per-and polyfluoroalkyl substances (PFASs) and traditional organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs) in the marginal seas of China were analyzed to study the occurrence, transport and phase partitioning. The influence of organic carbon (OC) and element carbon (EC) on particulate emerging pollutants in seawater was studied for the first time. The concentrations of PFASs, OCPs and PAHs in the seawater (dissolved phase plus particulate phase) ranged from 1.

View Article and Find Full Text PDF

As typical chemical indicators of the Anthropocene, polycyclic aromatic hydrocarbons (PAHs) and their environmental behavior in urban estuaries can reveal the influence of anthropogenic activities on coastal zones worldwide. In contrast to conventional approaches based on concentration datasets, we provide a compound-specific radiocarbon (C) perspective to quantitatively evaluate the sources and land‒sea transport of PAHs in an estuarine‒coastal surficial sedimentary system impacted by anthropogenic activities and coastal currents. Compound-specific C of PAHs and their C end-member mixing models showed that 67-73% of fluoranthene and pyrene and 76-80% of five- and six-ring PAHs in the Jiulong River Estuary (JRE, China) originated from fossil fuels (e.

View Article and Find Full Text PDF

Molecular imaging methods are powerful tools for gaining insight into the cellular organization of living cells. To understand the biogenesis and uptake of extracellular vesicles (EVs) as well as to engineer cell-derived vesicles for targeted drug delivery and therapy, genetic labeling with fluorescent proteins has increasingly been used to determine the structures, locations, and dynamics of EVs in vitro and in vivo. Here, we report a genetic method for the stable labeling of EVs to study their biogenesis and uptake in living human cells.

View Article and Find Full Text PDF

Background: Despite potential for improving patient outcomes, studies using three-dimensional measurements to quantify proximal tibial sclerotic bone and its effects on prosthesis stability after total knee arthroplasty (TKA) are lacking. Therefore, this study aimed to determine: (1) the distribution range of tibial sclerotic bone in patients with severe genu varum using three-dimensional measurements, (2) the effect of the proximal tibial sclerotic bone thickness on prosthesis stability according to finite-element modelling of TKA with kinematic alignment (KA), mechanical alignment (MA), and 3° valgus alignment, and (3) the effect of short extension stem augment utilization on prosthesis stability.

Methods: The sclerotic bone in the medial tibial plateau of 116 patients with severe genu varum was measured and classified according to its position and thickness.

View Article and Find Full Text PDF

In order to investigate the impacts of dam-related water impoundment on the spatial-temporal variations and transport of anthropogenic organic pollutants, 15 priority polycyclic aromatic hydrocarbons (PAHs) were analyzed in water samples from the Shuikou Reservoir (SKR) of the Minjiang River. The SKR was formed after the construction of the Shuikou Dam, which is the largest hydropower station in Southeast China. The water samples were collected from the backwater zone of the SKR, in both the wet and dry seasons, corresponding to the drainage and impoundment periods of water flow, respectively.

View Article and Find Full Text PDF

Estuarine and coastal margins are strongly influenced by anthropogenic inputs. To trace anthropogenic inputs to the subtropical Jiulong River Estuary (JRE) and the adjacent western Taiwan Strait (WTS), black carbon (BC) and its stable carbon isotope composition (δС) in surface sediments were investigated as an indicator of human activities. The concentrations of sedimentary BC were measured by an emerging method of thermal/optical reflectance with wet-chemical treatment (BC, including char and soot), and the conventional method of chemothermal oxidation (BC, related to the soot fraction) was also used to determine BC concentrations and δС compositions.

View Article and Find Full Text PDF

Background: MicroRNAs (miRs) are small noncoding RNAs that bind to complementary/partially complementary sites in the 3' untranslated regions of target genes to regulate protein production of the target transcript and to induce mRNA degradation or mRNA cleavage. The ability to perform accurate, high-throughput identification of physiologically active miR targets would enable functional characterization of individual miRs. Current target prediction methods include traditional approaches that are based on specific base-pairing rules in the miR's seed region and implementation of cross-species conservation of the target site, and machine learning (ML) methods that explore patterns that contrast true and false miR-mRNA duplexes.

View Article and Find Full Text PDF