Publications by authors named "Hanxun Qiu"

2,2',4,4'-tetra-bromodiphenytol ether (BDE-47) is one of the ubiquitous organic pollutants in mangrove sediments. To reveal the toxic effects of BDE-47 on mangrove plants, the mangrove species was used to investigate the photosynthetic capacity effects and the molecular mechanisms involved after BDE-47 exposure at environment-related levels (50, 500, and 5000 ng g dw). After a 60-day exposure, the photosynthetic capacity was inhibited in seedlings, and a decrease in the stomatal density and damage in the chloroplast ultrastructure in the leaves were found.

View Article and Find Full Text PDF

Energy requirements of tissues vary greatly and exhibit different mitochondrial respiratory activities with variable participation of both substrates and oxidative phosphorylation. The present study aimed to (1) compare the substrate preferences of mitochondria from different tissues and fish species with different ecological characteristics, (2) identify an appropriate substrate for comparing metabolism by mitochondria from different tissues and species, and (3) explore the relationship between mitochondrial metabolism mechanisms and ecological energetic strategies. Respiration rates and cytochrome c oxidase (CCO) activities of mitochondria isolated from heart, brain, kidney, and other tissues from Silurus meridionalis, Carassius auratus, and Megalobrama amblycephala were measured using succinate (complex II-linked substrate), pyruvate (complex I-linked), glutamate (complex I-linked), or combinations.

View Article and Find Full Text PDF

Dual functional graphene oxide (GO) microcapsules were fabricated through self-assembly in Pickering emulsions, carrying corrosion inhibitor benzotriazole (BTA) on the microcapsule shells and encapsulating a self-healing agent epoxy monomer. The formation of the GO microcapsules was assisted by the interaction between BTA and GO, which provided robust encapsulation for the epoxy monomer. The loading capacity of BTA and epoxy monomer reached 90.

View Article and Find Full Text PDF

The amounts of cadmium in multiple organs and the amounts of Na and Ca in the carcass were measured in dead and surviving southern catfish exposed to different concentrations of Cd. The 96 h median lethal concentration was 6.85 mg/L.

View Article and Find Full Text PDF

To examine the relationship between heavy metal accumulation in mitochondria and their respiration function in fish during in vivo exposure, juvenile Spinibarbus sinensis were exposed to different waterborne cadmium (Cd) concentrations for up to 28 days. We measured the state III respiration rate and cytochrome c oxidase (CCO) activity of mitochondria in hepatopancreas and kidney and the accumulated Cd concentrations in mitochondria and heat-stable protein (HSP) fractions. Dose- and time-dependent Cd accumulation occurred at different levels in both organs, but was lower in hepatopancreas.

View Article and Find Full Text PDF

Herein, we develop a novel method to synthesize lanthanide-functionalized carbon quantum dots via free-radical copolymerization using the methyl methacrylate (MMA) monomer as a functional monomer and introducing a lanthanide complex to obtain the dual-emission fluorescent composite material FCQDs-Ln(TFA) (Ln = Eu, Tb; TFA: trifluoroacetylacetone). The obtained composites were fully characterized, and their structures were investigated by Fourier transform infrared spectroscopy (FTIR), H NMR spectroscopy, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Subsequently, a series of white-light-emitting polymer composite films FCQDs- (Eu:Tb)(TFA)/poly(methyl methacrylate) (PMMA) were designed and synthesized by adjusting the ratio of Eu(TFA)/Tb(TFA) under different wavelengths.

View Article and Find Full Text PDF

With the increasing demands of the electronics industry, electromagnetic interference (EMI) shielding has become a critical issue that severely restricts the application of devices. In this work, we have proposed a "non-covalent welding" method to fabricate graphene-polyaniline (Gr-PANI) composite fillers. The Gr sheets are welded with PANI π-π non-covalent interactions.

View Article and Find Full Text PDF

With the development of portable electronic devices, highly efficient thermal management has become an important design consideration which requires good flexibility and excellent thermal conductivity. In this work, an integrated "modified-welding" method is used to deliver a flexible film with superior thermal conductivity. Firstly, graphene oxide (GO) is modified by 4,4'-diaminodiphenyl ether (ODA) through covalent bonding, aiming at providing reactive sites by polyimide (PI) on GO sheets for further in situ "modified-welding".

View Article and Find Full Text PDF

Electrochemical properties of a novel nanohybrid material, ferrocene-filled double-walled carbon nanotubes (Fc@DWNTs), have been successfully investigated for the first time by preparing different kinds of Fc@DWNTs modified glassy carbon electrodes. One pair of surface-confined redox waves corresponding to the couple of Fc/Fc+ is obtained, indicating Fc encapsulated in DWNTs retains electrochemical activity. Significantly differing from those of ferrocene-filled single-walled carbon nanotubes (Fc@SWNTs), Fc@DWNTs shows a specific electrochemical behavior, typically exhibiting thin-layer electrochemical characteristics at low scan rates, whereas diffusion-confined characteristics at high scan rates.

View Article and Find Full Text PDF

Purely semiconducting single-walled carbon nanotubes (s-SWNTs) with a narrow diameter distribution have been produced for HiPco SWNTs. A facile technique combining microwave irradiation with mixed-acid-assisted dispersion has proven efficient for enrichment of s-SWNTs. Using this process, both electronic type-dependent (metallic versus semiconducting) and diameter-dependent separation of SWNTs were simultaneously realized.

View Article and Find Full Text PDF

Triple-walled carbon nanotubes (TWNTs) with three concentric cylindrical graphene layers have been selectively synthesized for the first time from decomposition of ferrocene encapsulated inside double-walled carbon nanotubes, and were identified by high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy; HRTEM observations reveal that the formation of inner tubes of TWNTs follows a base-growth mechanism.

View Article and Find Full Text PDF