Magnetic Resonance Imaging (MRI) is pivotal in radiology, offering non-invasive and high-quality insights into the human body. Precise segmentation of the MRIs into different organs and tissues would be very beneficial as it would allow more accurate measurements, which are essential for accurate diagnosis and effective treatment planning. Specifically, segmenting bones in MRI would allow for more quantitative assessments of musculoskeletal conditions, while such assessments are largely absent in current radiological practice.
View Article and Find Full Text PDFDeep neural networks (DNNs) have demonstrated exceptional performance across various image segmentation tasks. However, the process of preparing datasets for training segmentation DNNs is both labor-intensive and costly, as it typically requires pixel-level annotations for each object of interest. To mitigate this challenge, alternative approaches such as using weak labels (e.
View Article and Find Full Text PDFBreast density, or the amount of fibroglandular tissue (FGT) relative to the overall breast volume, increases the risk of developing breast cancer. Although previous studies have utilized deep learning to assess breast density, the limited public availability of data and quantitative tools hinders the development of better assessment tools. Our objective was to (1) create and share a large dataset of pixel-wise annotations according to well-defined criteria, and (2) develop, evaluate, and share an automated segmentation method for breast, FGT, and blood vessels using convolutional neural networks.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2023
Anomaly detection (AD) aims to determine if an instance has properties different from those seen in normal cases. The success of this technique depends on how well a neural network learns from normal instances. We observe that the learning difficulty scales exponentially with the input resolution, making it infeasible to apply AD to high-resolution images.
View Article and Find Full Text PDFTraining segmentation models for medical images continues to be challenging due to the limited availability of data annotations. Segment Anything Model (SAM) is a foundation model trained on over 1 billion annotations, predominantly for natural images, that is intended to segment user-defined objects of interest in an interactive manner. While the model performance on natural images is impressive, medical image domains pose their own set of challenges.
View Article and Find Full Text PDFIEEE Trans Med Imaging
August 2023
Near-infrared diffuse optical tomography (DOT) is a promising functional modality for breast cancer imaging; however, the clinical translation of DOT is hampered by technical limitations. Specifically, conventional finite element method (FEM)-based optical image reconstruction approaches are time-consuming and ineffective in recovering full lesion contrast. To address this, we developed a deep learning-based reconstruction model (FDU-Net) comprised of a Fully connected subnet, followed by a convolutional encoder-Decoder subnet, and a U-Net for fast, end-to-end 3D DOT image reconstruction.
View Article and Find Full Text PDFImportance: An accurate and robust artificial intelligence (AI) algorithm for detecting cancer in digital breast tomosynthesis (DBT) could significantly improve detection accuracy and reduce health care costs worldwide.
Objectives: To make training and evaluation data for the development of AI algorithms for DBT analysis available, to develop well-defined benchmarks, and to create publicly available code for existing methods.
Design, Setting, And Participants: This diagnostic study is based on a multi-institutional international grand challenge in which research teams developed algorithms to detect lesions in DBT.