Hydrogel microparticles have been proved to be curative to diabetic wounds. Current trends focus on the integration of bioactive matrix and their smart stimulus-responsive release to meet the complex demand of regeneration in diabetic wound. In this paper, we present novel stem cell exosome-encapsulated Chinese herb glycyrrhizic acid (GA) hydrogel microparticles for wound healing.
View Article and Find Full Text PDFResearch (Wash D C)
December 2023
The controllable manipulation and transfer of droplets are fundamental in a wide range of chemical reactions and even life processes. Herein, we present a novel, universal, and straightforward acoustic approach to fabricating biomimetic surfaces for on-demand droplet manipulations like many natural creatures. Based on the capillary waves induced by surface acoustic waves, various polymer films could be deformed into pre-designed structures, such as parallel grooves and grid-like patterns.
View Article and Find Full Text PDFIn recent years, organs-on-chips have been arousing great interest for their bionic and stable construction of crucial human organs in vitro. Compared with traditional animal models and two-dimensional cell models, organs-on-chips could not only overcome the limitations of species difference and poor predict ability but also be capable of reappearing the complex cell-cell interaction, tissue interface, biofluid and other physiological conditions of humans. Therefore, organs-on-chips have been regarded as promising and powerful tools in diverse fields such as biology, chemistry, medicine and so on.
View Article and Find Full Text PDFAnticoagulation is vital to maintain blood fluidic status and physiological functions in the field of clinical blood-related procedures. Here, novel biomimetic anticoagulated porous inverse opal hydrogel particles is presented as anticoagulant bearing dynamic screening capability. The inverse opal hydrogel particles possess abundant sulfonic and carboxyl groups, which serve as binding sites with multiple coagulation factors and inhibit the blood coagulation process.
View Article and Find Full Text PDFSci Bull (Beijing)
May 2024
Liver-tissue engineering has proven valuable in treating liver diseases, but the construction of liver tissues with high fidelity remains challenging. Here, we present a novel three-dimensional (3D)-imprinted cell-sheet strategy for the synchronous construction of biomimetic hepatic microtissues with high accuracy in terms of cell type, density, and distribution. To achieve this, the specific composition of hepatic cells in a normal human liver was determined using a spatial proteogenomics dataset.
View Article and Find Full Text PDFStem cell therapy holds immense potential as a viable treatment for a widespread range of intractable disorders. As the safety of stem cell transplantation having been demonstrated in numerous clinical trials, various kinds of stem cells are currently utilized in medical applications. Despite the achievements, the therapeutic benefits of stem cells for diseases are limited, and the data of clinical researches are unstable.
View Article and Find Full Text PDFAs a promising new micro-physiological system, organ-on-a-chip has been widely utilized for pharmaceutical study and tissues engineering based on the three-dimensional constructions of tissues/organs and delicate replication of -like microenvironment. To better observe the biological processes, a variety of sensors have been integrated to realize , real-time, and sensitive monitoring of critical signals for organs development and disease modeling. Herein, we discuss the recent research advances made with respect to sensors-integrated organ-on-a-chip in this overall review.
View Article and Find Full Text PDFHard-healing diabetic wound brings burgeoning physical and mental burdens to patients. Current treatment strategies tend to achieve multistage promotion and real-time reporting to facilitate wound management. Herein, a biomimetic enzyme cascade inverse opal microparticles system for wound healing, which is intergated with glucose oxidase (GOD) and copper peroxide (CP).
View Article and Find Full Text PDFMagnetic photonic crystals (PhCs), as a representative responsive structural color material, have attracted increasing research focus due to merits such as brilliant refraction colors, instant responsiveness, and excellent manipuility, thus having been widely applied for color displaying, three-dimensional printing, sensing, and so on. Featured with traits such as contactless manner, flexible orientations, and adjustable intensity of external magnetism, magnetic PhCs have shown great superiority especially in the field of biomedical applications such as bioimaging and auxiliary clinical diagnosis. In this review, we summarize the current advancements of magnetic PhCs.
View Article and Find Full Text PDFLiquid metal (LM)-based elastomers have a demonstrated value in flexible electronics. Attempts in this area include the development of multifunctional LM-based elastomers with controllable morphology, superior mechanical performances, and great stability. Herein, inspired by the working principle of electric toothbrushes, a revolving microfluidic system is presented for the generation of LM droplets and construction of desired elastomers.
View Article and Find Full Text PDFDrug microcarriers are widely used in disease treatment, and microfluidics is well established in the preparation of microcarrier particles. A proper design of the microfluidic platform toward scalable production of drug microcarriers can extend its application values in wound healing, where large numbers of microcarriers are required. Here, a microfluidic step emulsification method for the preparation of monodisperse droplets is presented.
View Article and Find Full Text PDFStructural colors materials are profoundly explored owing to their fantastic optical properties and widespread applications. Development of structural color materials bearing flexible morphologies and versatile functionalities is highly anticipated. Here, a droplet-confined, magnetic-induced self-assembly strategy for generating rotary structural color spindles (SCSPs) by fast solvent extraction is proposed.
View Article and Find Full Text PDFMicromotors have led to an unprecedented revolution in the field of cargo delivery. Attempts in this area trend toward enriching their structures and improving their functions to promote their further applications. Herein, novel microneedle-motors (MNMs) for active drug delivery through a flexible multimodal microfluidic lithographic approach are presented.
View Article and Find Full Text PDFStructural colors, derived from existing natural creatures, have aroused widespread attention in the materials regulation for different applications. Here, inspired by the color adjusting mechanism of hummingbird, we present a novel shape-memory structural color hydrogel film by introducing shape memory polymers (SMPs) into synthetic inverse opal scaffold structure. The excellent flexibility as well as the inverse opal structure of the hydrogel films imparts them with stable stretchability and brilliant structural colors.
View Article and Find Full Text PDFMicrofluidic detection methods for cell deformability cytometry have been regarded as powerful tools for single-cell analysis of cellular mechanical phenotypes, thus having been widely applied in the fields of cell preparation, separation, clinical diagnostics and so on. Featured with traits like easy operations, low cost and high throughput, such methods have shown great potentials on investigating physiological state and pathological changes during cellular deformation. Herein, a review on the advancements of microfluidic-based cell deformation cytometry is presented.
View Article and Find Full Text PDFBladder cancer greatly endangers human health, and its early diagnosis is of vital importance. Exosomes, which contain proteins and nucleic acids related to their source cells, are expected to be an emerging biomarker for bladder cancer detection. Here, we propose a novel system for multiplexed analysis of bladder cancer-derived urine exosomes based on Janus magnetic microspheres as barcoded microcarriers.
View Article and Find Full Text PDFIonic hydrogels have attracted extensive attention because of their wide applicability in electronic skins, biosensors, and other biomedical areas. Tremendous effort is dedicated to developing ionic hydrogels with improved detection accuracy and multifunctionality. Herein, we present an inverse opal scaffold-based structural color ionic hydrogel with the desired features as intelligent patches for wound management.
View Article and Find Full Text PDFInspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored.
View Article and Find Full Text PDFMicroneedle arrays (MNs) have a demonstrated value in transdermal drug delivery systems. Attempts to this technology focus on the generation of functional MNs to achieve intelligent drug delivery. Here, multifunctional inverse opal microneedle (IOMN) arrays with the abilities are reported to load various drugs and monitor drug release.
View Article and Find Full Text PDFTumor-derived exosomes are vital for clinical dynamic and accurate tumor diagnosis, thus developing sensitive and multiple exosomes detection technology has attracted remarkable attention of scientists. Here, a novel herringbone microfluidic device with aptamer-functionalized barcodes integration for specific capture and multiple detection of tumor-derived exosomes is presented. The barcodes with core-shell constructions are obtained by partially replicating the periodically ordered hexagonal close-packaged colloidal crystal beads.
View Article and Find Full Text PDFInformation security occupies an important position in the era of big data. Attempts to improve the security performance tend to impart them with more additional encryption strategies. Herein, inspired by the wettability feature of Stenocara beetle elytra and signal model of traffic light, a novel array of perovskite nanocrystals (PNs)-integrated PhC microsphere for information security is presented.
View Article and Find Full Text PDFResearch (Wash D C)
December 2021
In the drug therapy of tumor, efficient and stable drug screening platforms are required since the drug efficacy varies individually. Here, inspired by the microstructures of hepatic lobules, in which hepatocytes obtain nutrients from both capillary vessel and the central vein, we present a novel hierarchical hydrogel system with ordered micro-nano structure for liver cancer-on-a-chip construction and drug screening. The hierarchical hydrogel system was fabricated by using pregel to fill and replicate self-assembled colloidal crystal arrays and microcolumn array template.
View Article and Find Full Text PDFMicromotors have opened novel avenues for drug delivery due to their capacity for self-propelling. Attempts in this field trend towards ameliorating their functions to promote their clinical applications. In this paper, an ingenious suction-cup-inspired micromotor is presented with adhesive properties for drug delivery in the stomach.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2021
As a fundamental feature of solid surfaces, wettability is playing an increasingly important role in our daily life. Benefitting from the inspiration of biological paradigms and the development in manufacturing technology, numerous wettability materials with elaborately designed surface topology and chemical compositions have been fabricated. Based on these advances, wettability materials have found broad technological implications in various fields ranging from academy, industry, agriculture to biomedical engineering.
View Article and Find Full Text PDF