Background: Comprehensive molecular diagnostics are highly dependent on the technical performance of next-generation sequencing (NGS) pipelines, which are assessed by data quality, cost, turnaround time, and accuracy of detecting a range of sequence and copy number variants.
Methods: A dataset of 285 clinically validated cases (205 retrospective and 80 prospective), carrying complex sequence and copy number variants and thousands of genetic polymorphisms underwent a clinical validation of the KAPA HyperChoice target enrichment system with parallel sample fidelity assessment across a number of NGS panels. The analysis included assessment of peripheral blood, urine, muscle and FFPE tissues.
Background: Personalized targeted therapies have transformed management of several solid tumors. Timely and accurate detection of clinically relevant genetic variants in tumor is central to the implementation of molecular targeted therapies. To facilitate precise molecular testing in solid tumors, targeted next-generation sequencing (NGS) assays have emerged as a valuable tool.
View Article and Find Full Text PDFBackground: Erythrocytosis, most often measured as an increase in hemoglobin and/or hematocrit, is a common reason for referral to internal medicine and hematology clinics and a rational approach is required to effectively identify patients with polycythemia vera while avoiding over-investigation.
Aim: We aimed to develop and validate a simple rule to predict JAK2 mutation positivity based on complete blood count parameters to aid in the diagnostic approach to patients referred for elevated hemoglobin.
Setting: Internal medicine and hematology clinics at an academic tertiary referral center.
Background: Molecular testing for mutations is part of the standard diagnostic workup for patients with suspected polycythemia vera. We sought to characterize evolving practice patterns in the investigation of erythrocytosis and the prevalence of secondary causes, including use of medications such as sodium-glucose cotransporter-2 (SGLT2) inhibitors, among patients who underwent molecular testing.
Methods: We reviewed charts of all consecutive patients investigated for erythrocytosis (hemoglobin > 160 g/L for women, > 165 g/L for men) with testing between 2015 and 2021 at London Health Sciences Centre, a tertiary referral centre in Ontario, Canada, to assess changes in rates of mutation positivity, average hemoglobin levels and the prevalence of secondary causes of erythrocytosis.
Since the identification of and exon 12 mutations as driver mutations in polycythemia vera (PV) in 2005, molecular testing of these mutations for patients with erythrocytosis has become a routine clinical practice. However, the incidence of myeloid mutations other than the common mutation in unselected patients referred for elevated hemoglobin is not well studied. This study aimed to characterize the mutational landscape in a real-world population of patients referred for erythrocytosis using a targeted next-generation sequencing (NGS)-based assay.
View Article and Find Full Text PDFBackground: Hyperglycemia-induced transcriptional alterations lead to aberrant synthesis of a large number of pathogenetic molecules leading to functional and structural damage to multiple end organs including the kidneys. Diabetic nephropathy (DN) remains a major cause of end stage renal disease. Multiple epigenetic mechanisms, including alteration of long non-coding RNAs (lncRNAs) may play a significant role mediating the cellular transcriptional activities.
View Article and Find Full Text PDFBackground: The use of molecular genetic biomarkers is rapidly advancing to aid diagnosis, prognosis, and clinical management of hematological disorders. We have implemented a next-generation sequencing (NGS) assay for detection of genetic variants and fusions as a frontline test for patients suspected with myeloid malignancy. In this study, we summarize the findings and assess the clinical impact in the first 1613 patients tested.
View Article and Find Full Text PDFIntroduction: In most laboratories, next generation sequencing (NGS) has been added without consideration for redundancy compared to conventional cytogenetics (CG). We tested a streamlined approach to genomic testing in patients with suspected myeloid and plasma cell neoplasms using next generation sequencing ("NGS first") as the primary testing modality and limiting cytogenetics (CG) to samples with morphologic abnormalities in the marrow aspirate.
Methods: Based on morphologic interpretation of bone marrow aspirate and flow cytometry, samples were triaged into four groups: (a) Samples with dysplasia or excess blasts had both NGS and karyotyping; (b) Samples without excess blasts or dysplasia had NGS only; (c) Repeat samples with previous NGS and/or CG studies were not retested; (d) Samples for suspected myeloma with less than 5% plasma cell had CG testing cancelled.
Coronaviruses (CoVs) are a group of enveloped positive-sense RNA viruses and can cause deadly diseases in animals and humans. Cell entry is the first and essential step of successful virus infection and can be divided into two ongoing steps: cell binding and membrane fusion. Over the past two decades, stimulated by the global outbreak of SARS-CoV and pandemic of SARS-CoV-2, numerous efforts have been made in the CoV research.
View Article and Find Full Text PDFObjective: Universal screening of endometrial cancer for underlying Lynch syndrome (LS) using DNA mismatch repair immunohistochemistry (MMR IHC) has been recommended. The objective of this study was to assess the feasibility and outcomes of using office endometrial samplings in a community LS screening program.
Methods: A community laboratory adopted Cancer Care Ontario's LS screening recommendations.
Background: Hereditary cancer predisposition syndromes account for approximately 10% of cancer cases. Next generation sequencing (NGS) based multi-gene targeted panels is now a frontline approach to identify pathogenic mutations in cancer predisposition genes in high-risk families. Recent evolvement of NGS technologies have allowed simultaneous detection of sequence and copy number variants (CNVs) using a single platform.
View Article and Find Full Text PDFNext-generation sequencing (NGS) technologies have facilitated multi-gene panel (MGP) testing to detect germline DNA variants in hereditary cancer patients. This sensitive technique can uncover unexpected, non-germline incidental findings indicative of mosaicism, clonal hematopoiesis (CH), or hematologic malignancies. A retrospective chart review was conducted to identify cases of incidental findings from NGS-MGP testing.
View Article and Find Full Text PDFThe adaptation of a broad genomic sequencing approach in the clinical setting has been accompanied by considerations regarding the clinical utility, technical performance, and diagnostic yield compared to targeted genetic approaches. We have developed MedExome, an integrated framework for sequencing, variant calling (SNVs, Indels, and CNVs), and clinical assessment of ~4600 medically relevant genes. We compared the technical performance of MedExome with the whole-exome and targeted gene-panel sequencing, assessed the reasons for discordance, and evaluated the added clinical yield of MedExome in a cohort of unresolved subjects suspected of genetic disease.
View Article and Find Full Text PDFThe COVID-19 pandemic has caused an unprecedented global public health and economic crisis. The origin and emergence of its causal agent, SARS-CoV-2, in the human population remains mysterious, although bat and pangolin were proposed to be the natural reservoirs. Strikingly, unlike the SARS-CoV-2-like coronaviruses (CoVs) identified in bats and pangolins, SARS-CoV-2 harbors a polybasic furin cleavage site in its spike (S) glycoprotein.
View Article and Find Full Text PDFC3A is a subclone of the human hepatoblastoma HepG2 cell line with strong contact inhibition of growth. We fortuitously found that C3A was more susceptible to human coronavirus HCoV-OC43 infection than HepG2, which was attributed to the increased efficiency of virus entry into C3A cells. In an effort to search for the host cellular protein(s) mediating the differential susceptibility of the two cell lines to HCoV-OC43 infection, we found that ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2), gamma-interferon-inducible lysosome/endosome-localized thiolreductase (GILT), and lymphocyte antigen 6 family member E (LY6E), the three cellular proteins identified to function in interference with virus entry, were expressed at significantly higher levels in HepG2 cells.
View Article and Find Full Text PDFDiverse SARS-like coronaviruses (SL-CoVs) have been identified from bats and other animal species. Like SARS-CoV, some bat SL-CoVs, such as WIV1, also use angiotensin converting enzyme 2 (ACE2) from human and bat as entry receptor. However, whether these viruses can also use the ACE2 of other animal species as their receptor remains to be determined.
View Article and Find Full Text PDFNext-generation sequencing (NGS) increasingly influences diagnosis, prognosis and management of myelodysplastic syndrome (MDS). In addition to marrow morphology and flow cytometry, our institution performs cytogenetics (CG) and NGS-based testing routinely in patients with suspected MDS. We evaluated the relative value of NGS in the assessment of patients with suspected MDS.
View Article and Find Full Text PDFPoly-ADP-ribose-polymerase inhibitor (PARPi) treatment is indicated for advanced-stage ovarian tumors with BRCA1/2 deficiency. The "BRCAness" status is thought to be attributed to a tumor phenotype associated with a specific epigenomic DNA methylation profile. Here, we examined the diagnostic impact of combined BRCA1/2 sequence, copy number, and promoter DNA methylation analysis, and evaluated whether genomic DNA methylation patterns can predict the BRCAness in ovarian tumors.
View Article and Find Full Text PDFCharcot-Marie-Tooth disease (CMT) is one of the most common Mendelian disorders characterised by genetic heterogeneity, progressive distal muscle weakness and atrophy, foot deformities and distal sensory loss. In this report, we describe genetic testing data including comprehensive sequencing and copy number analysis of 34 CMT-related genes in a Canadian cohort of patients with suspected CMT. We have demonstrated a notable gender testing bias, with an overall diagnostic yield of 15% in males and 21% in females.
View Article and Find Full Text PDFGenetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called "episignatures"). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results.
View Article and Find Full Text PDFInterferons (IFNs) control viral infections by inducing expression of IFN-stimulated genes (ISGs) that restrict distinct steps of viral replication. We report herein that gamma-interferon-inducible lysosomal thiol reductase (GILT), a lysosome-associated ISG, restricts the infectious entry of selected enveloped RNA viruses. Specifically, we demonstrated that GILT was constitutively expressed in lung epithelial cells and fibroblasts and its expression could be further induced by type II interferon.
View Article and Find Full Text PDFNontruncating sequence variants represent a major challenge in variant interpretation and classification. Here, we report a patient with features of Kabuki syndrome who carries two rare heterozygous variants in KMT2D: c.12935C>T, p.
View Article and Find Full Text PDF