Publications by authors named "Hanwen Liu"

Background: Lung adenocarcinoma remains a leading cause of cancer-related mortality worldwide, characterized by high genetic and cellular heterogeneity, especially within the tumor microenvironment.

Objective: This study integrates single-cell RNA sequencing (scRNA-seq) with genome-wide association studies (GWAS) using Bayesian deconvolution and machine learning techniques to unravel the genetic and functional complexity of lung adenocarcinoma epithelial cells.

Methods: We performed scRNA-seq and GWAS analysis to identify critical cell populations affected by genetic variations.

View Article and Find Full Text PDF

Background: Investigations into the intricacies of glycosylation modifications, a prevalent post-translational alteration observed in neoplasms, especially remain elusive in the context of lung adenocarcinoma. Through the integration of multiple omics approaches, the investigation aimed to delineate the significance of glycosylation in lung adenocarcinoma, with an objective to pinpoint viable biological targets.

Methods: Initial steps involved the identification of genes differentially expressed in relation to glycosylation at the aggregate transcriptome level within lung adenocarcinoma tissues.

View Article and Find Full Text PDF

Metal-support interactions (MSI) play a crucial role in enhancing the catalytic activity and stability of metal catalysts by establishing a stable metal-oxide interface. However, precisely controlling MSI at the atomic scale remains a significant challenge, as how to construct an optimal MSI is still not fully understood: Both insufficient and excessive MSI showed inferior catalytic performance. In this study, we propose finely tuning MSI using temporal-precise transient high-temperature pulse heating.

View Article and Find Full Text PDF

Nitrogen-containing heterocycles, such as indoles and quinolines, serve as the key scaffolds in numerous pharmaceuticals, pesticides, and natural products. The synthesis methods of nitrogen-containing heterocycles show significant scientific and industrial value. As a chemical intermediate featuring dual functional groups, cyanamide plays a crucial role in organic synthesis, directly affecting the development of new drugs and the design of new materials.

View Article and Find Full Text PDF

In an axion haloscope, the weak photon signal, theoretically converted from axions, is captured by a detection cavity. The signal from the cavity is too weak to be acquired by a signal receiver. The amplification chain assists the signal acquisition by amplifying the signal and requires accurate gain calibration.

View Article and Find Full Text PDF

Objective: To assess whether intra-arterial tenecteplase administered after successful endovascular recanalisation improves outcomes in patients with acute arterial occlusion of the posterior circulation.

Design: Multicentre randomised controlled trial.

Setting: 31 hospitals in China, 24 January 2023 to 24 August 2023.

View Article and Find Full Text PDF

There exist significant challenges for lung adenocarcinoma (LUAD) due to its poor prognosis and limited treatment options, particularly in the advanced stages. It is crucial to identify genetic biomarkers for improving outcome predictions and guiding personalized therapies. In this study, we utilize a multi-step approach that combines principled sure independence screening, penalized regression methods and information gain to identify the key genetic features of the ultra-high dimensional RNA-sequencing data from LUAD patients.

View Article and Find Full Text PDF

Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells.

View Article and Find Full Text PDF
Article Synopsis
  • Tetrahedral, pyramidal, and octahedral metal-oxygen coordinated ligands are key to metal-oxide structures, with their behavior during electrochemical oxidation being critical yet underexplored.
  • A study links oxygen-evolving performance to structural properties of model oxides, finding that pyramidal structures are more vulnerable to hydroxide (OH) attacks, leading to transformation into active amorphous CoOOH.
  • The research proposes an ion-tuning strategy to improve both activity and stability in metal oxides, addressing the challenge of balancing performance and structural durability in electrochemical applications.
View Article and Find Full Text PDF

It remains a grand challenge to develop electrocatalysts with simultaneously high activity, long durability, and low cost for the oxygen evolution reaction (OER), originating from two competing reaction pathways and often trade-off performances. The adsorbed evolution mechanism (AEM) suffers from sluggish kinetics due to a linear scaling relationship, while the lattice oxygen mechanism (LOM) causes unstable structures due to lattice oxygen escape. We propose a MoZnFeCoNi high-entropy alloy (HEA) incorporating AEM-promoter Mo and LOM-active Zn to achieve dual activation and stabilization for efficient and durable OER.

View Article and Find Full Text PDF

Liver cancer organoids replicate the pathophysiology of primary tumors, making them ideal for drug screening and efficacy evaluation. However, their growth in complex, variable, animal-derived matrices hinders practical application. Here, we designed an easily accessible, chemically defined, biocompatible double-network hydrogel (HADR) using methacrylated hyaluronic acid (HAMA), sodium alginate (SA), methacrylamide dopamine (DMA), and c(RGDFC) for liver cancer organoid culture.

View Article and Find Full Text PDF
Article Synopsis
  • Urea is a key nitrogen fertilizer for sustainable agriculture, and increasing its production is vital to meet growing global demand.
  • Electrocatalytic co-reduction of CO₂ and nitrogen compounds is a promising yet challenging method for green urea synthesis, facing issues like slow reaction rates and complicated electron transfers.
  • Recent advancements in bimetallic, metal oxide/hydroxide, and carbon-based catalysts are explored, along with future opportunities for developing effective catalysts to enhance the urea synthesis process.
View Article and Find Full Text PDF

Metal-support interaction (MSI) is pivotal and ubiquitously used in the development of next-generation catalysts, offering a pathway to enhance both catalytic activity and stability. However, owing to the lattice mismatch and poor solubility, traditional catalysts often exhibit a metal-on-support heterogeneous structure with limited interfaces and interaction and, consequently, a compromised enhancement of properties. Herein, we report a universal and tunable method for supersaturated doping of transition-metal carbides via strongly nonequilibrium carbothermal shock synthesis, characterized by rapid heating and swift quenching.

View Article and Find Full Text PDF

This study harnesses RNA sequencing data from the Cancer Genome Atlas to unearth pivotal genetic markers linked to the progression of liver hepatocellular carcinoma (LIHC), a major contributor to cancer-related deaths worldwide, characterized by a dire prognosis and limited treatment avenues. We employ advanced feature selection techniques, including sure independence screening (SIS) combined with the least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD), information gain (IG), and permutation variable importance (VIMP) methods, to effectively navigate the challenges posed by ultra-high-dimensional data. Through these methods, we identify critical genes like MED8 as significant markers for LIHC.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC)-derived exosomes, as a cell-free alternative to MSCs, offer enhanced safety and significant potential in regenerative medicine. However, isolating these exosomes poses a challenge, complicating their broader application. Commonly used methods like ultracentrifugation (UC) and tangential flow filtration are often impractical due to the requirement for costly instruments and ultrafiltration membranes.

View Article and Find Full Text PDF

Photodetectors and gas sensors are vital in modern technology, spanning from environmental monitoring to biomedical diagnostics. This paper explores the UV detection and gas sensing properties of a zinc oxide (ZnO) nanorod array (ZNA) grown on silver nanowire mesh (AgNM) using a hydrothermal method. We examined the impact of different zinc acetate precursor concentrations on their properties.

View Article and Find Full Text PDF

Non-invasive myelin water fraction (MWF) and g-ratio mapping using microstructural MRI have the potential to offer critical insights into brain microstructure and our understanding of neuroplasticity and neuroinflammation. By leveraging a unique panel of variably hypomyelinating mouse strains, we validated a high-resolution, model-free image reconstruction method for whole-brain MWF mapping. Further, by employing a bipolar gradient echo MRI sequence, we achieved high spatial resolution and robust mapping of MWF and g-ratio across the whole mouse brain.

View Article and Find Full Text PDF

Transient receptor potential melastatin M3 (TRPM3) channels have been recognized as a pain transducer in dorsal root ganglion (DRG) neurons in recent years. TRPM3 activation initiates neurogenic inflammation and is required for the development of inflammatory hyperalgesia. We aimed to evaluate the role of TRPM3 in pancreas sensory afferents in pancreatic nociception, neurogenic inflammation, and acute pancreatitis (AP)-associated pain.

View Article and Find Full Text PDF

Enhanced spontaneous bladder contractions (SBCs) have been thought one of the important underlying mechanisms for detrusor overactivity (DO). Piezo1 channel has been demonstrated involved in bladder function and dysfunction in rodents. We aimed to investigate the modulating role of Piezo1 in SBCs activity of human bladder.

View Article and Find Full Text PDF

Identifying sensitive and specific measures that can quantify myelin are instrumental in characterizing microstructural changes in neurological conditions. Neuroimaging transcriptomics is emerging as a valuable technique in this regard, offering insights into the molecular basis of promising candidates for myelin quantification, such as myelin water fraction (MWF). We aimed to demonstrate the utility of neuroimaging transcriptomics by validating MWF as a myelin measure.

View Article and Find Full Text PDF

Myelin Basic Protein (MBP) is essential for both elaboration and maintenance of CNS myelin, and its reduced accumulation results in hypomyelination. How different Mbp mRNA levels affect myelin dimensions across the lifespan and how resident glial cells may respond to such changes are unknown. Here, to investigate these questions, we used enhancer-edited mouse lines that accumulate Mbp mRNA levels ranging from 8% to 160% of wild type.

View Article and Find Full Text PDF

We aimed to investigate the expression and motor modulatory roles of several mechano-sensitive channels (MSCs) in human ureter. Human proximal ureters were obtained from eighty patients subjected to nephrectomy. Expression of MSCs at mRNA, protein and functional levels were examined.

View Article and Find Full Text PDF

Hydrogenation is a versatile chemical process with significant applications in various industries, including food production, petrochemical refining, pharmaceuticals, and hydrogen carriers/safety. Traditional hydrogenation of aromatics, hindered by the stable π-conjugated phenyl ring structures, typically requires high temperatures and pressures, making ambient hydrogenation a grand challenge. Herein, we introduce a PdPtRuCuNi high entropy alloy (HEA) nanocatalyst, achieving an exceptional 100% hydrogenation of carbon-carbon unsaturated bonds, including alkynyl and phenyl groups, in solid 1,4-bis(phenylethynyl)benzene (DEB) at 25 °C under ≤1 bar H and solventless condition.

View Article and Find Full Text PDF

To understand the fracture properties of the nitrate ester plasticized polyether (NEPE) propellant, single-edge notched tension (SENT) tests were carried out at room temperature (20 °C) under different tensile rates (10-500 mm/min). The mechanical response, crack morphology, evolution path, and crack propagation velocity during the fracture process were studied using a combination of a drawing machine and a high-speed camera. The mode I critical stress intensity factor was calculated to analyze the tensile fracture toughness of the NEPE propellant, and a criterion related to was proposed as a means of determining whether the solid rocket motors can normally work.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl5aq5tmrhl1a97snloicga5tlvhbepng): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once