Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme involved in catalyzing Poly-(ADP-ribosyl)ation. PARP1 binds to different forms of DNA and DNA breaks and thus plays important roles in several cellular processes, including DNA damage repair, cell cycle regulation, chromatin remodeling, and maintaining genomic stability. In this study, we conducted biochemical and biophysical characterization of PARP1 binding to G-quadruplex DNA (G4-DNA).
View Article and Find Full Text PDFThe development of artificial molecular machines is a challenging endeavor. Herein, we have synthesized a series of bispidine diamides D1-D6 that exhibit rotation reminiscent of a motor motion. Dynamic NMR, X-ray diffraction, quantum mechanical calculations, and molecular dynamics simulations provided insights into their rotational dynamics.
View Article and Find Full Text PDFThe development of designer topological structures is a synthetically challenging endeavor. We present herein bispidine as a platform for the design of molecules with various topologies and functions. The bispidine-based acyclic molecule, which shows intriguing S-shape topology, is discussed.
View Article and Find Full Text PDFElectrically controllable nonvolatile magnetic memories show great potential for the replacement of conventional semiconductor-based memory technologies. Here, we experimentally demonstrate ultrafast spin-orbit torque (SOT)-induced coherent magnetization switching dynamics in a ferromagnet. We use an ultrafast photoconducting switch and a coplanar strip line to generate and guide a ~9-picosecond electrical pulse into a heavy metal/ferromagnet multilayer to induce ultrafast SOT.
View Article and Find Full Text PDFMagnetic domain wall (DW)-based logic devices offer numerous opportunities for emerging electronics applications allowing superior performance characteristics such as fast motion, high density, and nonvolatility to process information. However, these devices rely on an external magnetic field, which limits their implementation; this is particularly problematic in large-scale applications. Multiferroic systems consisting of a piezoelectric substrate coupled with ferromagnets provide a potential solution that provides the possibility of controlling magnetization through an electric field via magnetoelastic coupling.
View Article and Find Full Text PDFTriazolophanes with larger ring sizes such as 40- and 42- were designed and synthesized. Ultramicroscopic studies on a variety of expanded triazolophanes and larger acyclic systems revealed vesicular self-assembly. The role of molecular topology on vesicular assembly was systematically investigated by studying a series of molecules with increasing curvature.
View Article and Find Full Text PDFWe report a novel molecular topology-based approach for creating reproducible vesicular assemblies in different solvent environments (including aqueous) using specifically designed pseudopeptides. Deviating from the classical "polar head group and hydrophobic tail" model of amphiphiles, we showed (reversible) self-assembly of synthesized pseudopeptides into vesicles. Naming these new type/class of vesicles "pseudopetosomes", we characterized them by high-resolution microscopy (scanning electron, transmission electron, atomic force, epifluorescence and confocal) along with dynamic light scattering.
View Article and Find Full Text PDFLiquid crystal (LC) droplets are promising candidates for sensing applications due to their high sensitivity to surface anchoring changes, resulting in readily detectable optical effects. Herein, we have designed and synthesized amino acid-based bottlebrush polymers and investigated their impact on LC director configurations in the droplets. The pseudopeptidic bottlebrush polymers with an aromatic (phenyl) and aliphatic appendages are synthesized using ring-opening metathesis polymerization (ROMP).
View Article and Find Full Text PDFDialysis-related amyloidosis (DRA) is considered an inescapable consequence of renal failure. Upon prolonged hemodialysis, it involves accumulation of toxic β2-microglobulin (β2m) amyloids in bones and joints. Current treatment methods are plagued with high cost, low specificity, and low capacity.
View Article and Find Full Text PDFBioorg Med Chem Lett
July 2022
Peptides and pseudopeptides show distinct self-assembled nanostructures such as fibers, nanotubes, vesicles, micelles, toroids, helices and rods. The formation of such molecular communities through the collective behavior of molecules is not fully understood at a molecular level. All these self-assembled nanostructured materials have a wide range of applications such as drug delivery, gene delivery, biosensing, bioimaging, catalysis, tissue engineering, nano-electronics and sensing.
View Article and Find Full Text PDFThe last few decades witnessed a remarkable advancement in the field of molecular anion receptors. A variety of anion binding motifs have been discovered, and large number of designer molecular anion receptors with high selectivity are being reported. However, anion detection in an aqueous medium is still a formidable challenge as evident from only a miniscule of synthetic systems available in the literature.
View Article and Find Full Text PDFThe development of synthetic scaffolds that nucleate well-folded secondary structures is highly challenging. Herein, we designed and synthesized a series of core-modified peptides (F1, F2, F3, and F4) that fold into β-strand structures. These bispidine-scaffolded peptides were studied by CD, IR, NMR, single crystal XRD, and Molecular Dynamics (MD) simulations to investigate their conformational preferences.
View Article and Find Full Text PDFSpherical assemblies named "reverse micellar vesicles" from self-assembling psuedopeptidic bottlebrush polymers are reported. These assemblies exhibited the combined features of both micelles and vesicles viz. molecular arrangement of classical micelles and dimensions similar to that of classical vesicles.
View Article and Find Full Text PDFLong-lived coherences (LLCs) in a pair of coupled protons have long lifetimes and hence decreased line width and increased spectral resolution. Fourier transformation of the damped oscillatory decay of the LLC also provides coupling information on the spin system. In a three-spin system, unlike in the two-spin case, the peaks in an LLC spectrum are observed at combinations of the coupling constants.
View Article and Find Full Text PDFWe report herewith tryptophan (Trp)-conjugated peptidomimetics that show intramolecular through-space association between the Trp units. Our investigation revealed that the proximal placement of Trp can lead to the emergence of a new and unanticipated fluorescent entity constituting a Trp-Trp dimer. Proton-induced modulation of fluorescence is a consequence of this work.
View Article and Find Full Text PDFA gyrator is a non-reciprocal two port device with 180° phase shift in the transmissions between two ports. Though electromagnetic realizations of gyrators have been well studied, devices based on other forms of interaction are relatively unexplored. Here we demonstrate a device in which signal is transmitted via magneto-elastic coupling, can function as a gyrator.
View Article and Find Full Text PDF