Publications by authors named "Hantao Ji"

We present laboratory measurements showing the two-dimensional (2D) structure of energy conversion during magnetic reconnection with a guide field over the electron and ion diffusion regions, resolving the separate energy deposition on electrons and ions. We find that the electrons are energized by the parallel electric field at two locations, at the X line and around the separatrices. On the other hand, the ions are energized ballistically by the perpendicular electric field in the vicinity of the high-density separatrices.

View Article and Find Full Text PDF

The lower hybrid drift wave (LHDW) has been a candidate for anomalous resistivity and electron heating inside the electron diffusion region of magnetic reconnection. In a laboratory reconnection layer with a finite guide field, quasielectrostatic LHDW (ES-LHDW) propagating along the direction nearly perpendicular to the local magnetic field is excited in the electron diffusion region. ES-LHDW generates large density fluctuations (δn_{e}, about 25% of the mean density) that are correlated with fluctuations in the out-of-plane electric field (δE_{Y}, about twice larger than the mean reconnection electric field).

View Article and Find Full Text PDF
Article Synopsis
  • The Comet Interceptor mission aims to explore a long-period comet or an interstellar object entering our Solar System, with a focus on its surface composition, shape, and the composition of its gas and dust.
  • Proposed to the European Space Agency in 2018 and approved in June 2022, it is set to launch in 2029 alongside the Ariel mission, utilizing a low-cost approach that allows it to wait for a suitable target comet.
  • The mission will feature a main probe and two sub-probes (B1 from JAXA and B2), providing simultaneous, detailed 3D information about the comet and its interaction with the solar wind, making it unique compared to previous missions.
View Article and Find Full Text PDF

A double-sided electron energy analyzer is developed for studies of magnetic reconnection. It can measure electron energy distribution functions along two directions opposite to each other at the same time. Each side is composed of a floating reference grid, an energy selector grid, and a collector plate.

View Article and Find Full Text PDF

We present methods for analyzing Beam Emission Spectroscopy (BES) data to obtain the plasma density evolution associated with rapid sawtooth crash events at the DIII-D tokamak. BES allows coverage over a 2D spatial plane, inherently local measurements, with fast time responses, and, therefore, provides a valuable new channel for data during sawtooth events. A method is developed to remove sawtooth-induced edge-light pulses contained in the BES data.

View Article and Find Full Text PDF

We report the first direct evidence for the axisymmetric standard magnetorotational instability (SMRI) from a combined experimental and numerical study of a magnetized liquid-metal shear flow in a Taylor-Couette cell with independently rotating and electrically conducting end caps. When a uniform vertical magnetic field B_{i} is applied along the rotation axis, the measured radial magnetic field B_{r} on the inner cylinder increases linearly with a small magnetic Reynolds number Rm due to the magnetization of the residue Ekman circulation. Onset of the axisymmetric SMRI is identified from the nonlinear increase of B_{r} beyond a critical Rm in both experiments and nonlinear numerical simulations.

View Article and Find Full Text PDF

The standard magnetorotational instability (SMRI) is a promising mechanism for turbulence and rapid accretion in astrophysical disks. It is a magnetohydrodynamic (MHD) instability that destabilizes otherwise hydrodynamically stable disk flow. Due to its microscopic nature at astronomical distances and stringent requirements in laboratory experiments, SMRI has remained unconfirmed since its proposal, despite its astrophysical importance.

View Article and Find Full Text PDF

A four-tip electrostatic probe is constructed to measure high-frequency (0.1-10 MHz) fluctuations in both the electric field (one component) and electron density in a laboratory plasma. This probe also provides data for the local electron temperature and density.

View Article and Find Full Text PDF

Extensive simulations of the Princeton Magnetorotational Instability (MRI) Experiment with the Spectral/Finite Element code for Maxwell and Navier-Stokes Equations (SFEMaNS) have been performed to map the MRI-unstable region as a function of inner cylinder angular velocity and applied vertical magnetic field. The angular velocities of the outer cylinder and the end-cap rings follow the inner cylinder in fixed ratios optimized for MRI. We first confirm the exponential growth of the MRI linear phase using idealized conducting vertical boundaries (end caps) rotating differentially with a Taylor-Couette profile.

View Article and Find Full Text PDF

Magnetic reconnection has been intensively studied in fully ionized plasmas. However, plasmas are often partially ionized in astrophysical environments. The interactions between the neutral particles and ionized plasmas might strongly affect the reconnection mechanisms.

View Article and Find Full Text PDF

Stability and nonlinear evolution of rotating magnetohydrodynamic flows in the Princeton magnetorotational instability (MRI) experiment are examined using three-dimensional non-axisymmetric simulations. In particular, the effect of axial boundary conductivity on a free Stewartson-Shercliff layer (SSL) is numerically investigated using the spectral finite-element Maxwell and Navier Stokes (SFEMaNS) code. The free SSL is established by a sufficiently strong magnetic field imposed axially across the differentially rotating fluid with two rotating rings enforcing the boundary conditions.

View Article and Find Full Text PDF

The effects of axial boundary conductivity on the formation and stability of a magnetized free Stewartson-Shercliff layer (SSL) in a short Taylor-Couette device are reported. As the axial field increases with insulating endcaps, hydrodynamic Kelvin-Helmholtz-type instabilities set in at the SSLs of the conducting fluid, resulting in a much reduced flow shear. With conducting endcaps, SSLs respond to an axial field weaker by the square root of the conductivity ratio of endcaps to fluid.

View Article and Find Full Text PDF

We investigate numerically the Princeton magnetorotational instability (MRI) experiment and the effect of conducting axial boundaries or endcaps. MRI is identified and found to reach a much higher saturation than for insulating endcaps. This is probably due to stronger driving of the base flow by the magnetically rather than viscously coupled boundaries.

View Article and Find Full Text PDF

The spontaneous formation of plasmoids via the resistive electron tearing of a reconnecting current sheet is observed in the laboratory. These experiments are performed during driven, antiparallel reconnection in the two-fluid regime within the Magnetic Reconnection Experiment. It is found that plasmoids are present even at a very low Lundquist number, and the number of plasmoids scales with both the current sheet aspect ratio and the Lundquist number.

View Article and Find Full Text PDF

Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun.

View Article and Find Full Text PDF

The effects of a density asymmetry across the current sheet on anti-parallel magnetic reconnection are studied systematically in a laboratory plasma. Despite a significant density ratio of up to 10, the in-plane magnetic field profile is not significantly changed. On the other hand, the out-of-plane Hall magnetic field profile is considerably modified; it is almost bipolar in structure with the density asymmetry, as compared to quadrupolar in structure with the symmetric configuration.

View Article and Find Full Text PDF

Magnetic reconnection, in which magnetic field lines break and reconnect to change their topology, occurs throughout the universe. The essential feature of reconnection is that it energizes plasma particles by converting magnetic energy. Despite the long history of reconnection research, how this energy conversion occurs remains a major unresolved problem in plasma physics.

View Article and Find Full Text PDF

The ion dynamics in a collisionless magnetic reconnection layer are studied in a laboratory plasma. The measured in-plane plasma potential profile, which is established by electrons accelerated around the electron diffusion region, shows a saddle-shaped structure that is wider and deeper towards the outflow direction. This potential structure ballistically accelerates ions near the separatrices toward the outflow direction.

View Article and Find Full Text PDF

The effects of partial ionization (n(i) / n(n) ≤ 1%) on magnetic reconnection in the Hall regime have been studied systematically in the Magnetic Reconnection Experiment. It is shown that, when neutrals are added, the Hall quadrupole field pattern and thus electron flow are unchanged while the ion outflow speed is reduced due to ion-neutral drag. However, in contrast to theoretical predictions, the ion diffusion layer width does not change appreciably.

View Article and Find Full Text PDF

We report on observations of a free-Shercliff-layer instability in a Taylor-Couette experiment using a liquid metal over a wide range of Reynolds numbers, Re∼10(3)-10(6). The free Shercliff layer is formed by imposing a sufficiently strong axial magnetic field across a pair of differentially rotating axial end cap rings. This layer is destabilized by a hydrodynamic Kelvin-Helmholtz-type instability, characterized by velocity fluctuations in the r-θ plane.

View Article and Find Full Text PDF

Using mean-field theory, we compute the evolution of the magnetic field in a cylinder with outer perfectly conducting boundaries and imposed axial magnetic and electric fields. The thus injected magnetic helicity in the system can be redistributed by magnetic helicity fluxes down the gradient of the local current helicity of the small-scale magnetic field. A weak reversal of the axial magnetic field is found to be a consequence of the magnetic helicity flux in the system.

View Article and Find Full Text PDF

We report three-dimensional numerical simulations of the flow of an electrically conducting fluid in a spherical shell when a magnetic field is applied. Different spherical Couette configurations are investigated by varying the rotation ratio between the inner and the outer sphere, the geometry of the imposed field, and the magnetic boundary conditions on the inner sphere. Either a Stewartson layer or a Shercliff layer, accompanied by a radial jet, can be generated depending on the rotation speeds and the magnetic-field strength, and various nonaxisymmetric destabilizations of the flow are observed.

View Article and Find Full Text PDF

We report the first identification of the electron-diffusion region, where demagnetized electrons are accelerated to super-Alfvénic speed, in a reconnecting laboratory plasma. The width of the electron-diffusion region scales with the electron skin depth [ approximately (5.5-7.

View Article and Find Full Text PDF

We investigate numerically a traveling wave pattern observed in experimental magnetized Taylor-Couette flow at low magnetic Reynolds number. By accurately modeling viscous and magnetic boundaries in all directions, we reproduce the experimentally measured wave patterns and their amplitudes. Contrary to previous claims, the waves are shown to be transiently amplified disturbances launched by viscous boundary layers, rather than globally unstable magnetorotational modes.

View Article and Find Full Text PDF