Publications by authors named "Hanstorp D"

Coherent optical detection is a powerful technique for characterizing a wide range of physical excitations. Here, we use two optical approaches (fundamental and parametric pumping) to microscopically characterize the high-frequency auto-oscillations of single and multiple nano-constriction spin Hall nano-oscillators (SHNOs). To validate the technique and demonstrate its robustness, we study SHNOs made from two different material stacks, NiFe/Pt and W/CoFeB/MgO, and investigate the influence of both the RF injection power and the laser power on the measurements, comparing the optical results to conventional electrical measurements.

View Article and Find Full Text PDF

This study focuses on the bubble dynamics and associated breakup of individual droplets of diesel and biodiesel under the influence of femtosecond laser pulses. The bubble dynamics were examined by suspending the droplets in the air through an acoustically levitated setup. The laser pulse energies ranged from 25 to 1050 µJ, and droplet diameters varied between 0.

View Article and Find Full Text PDF

We have studied the stability of the smallest long-lived all carbon molecular dianion (C_{7}^{2-}) in new time domains and with a single ion at a time using a cryogenic electrostatic ion-beam storage ring. We observe spontaneous electron emission from internally excited dianions on millisecond timescales and monitor the survival of single colder C_{7}^{2-} molecules on much longer timescales. We find that their intrinsic lifetime exceeds several minutes-6 orders of magnitude longer than established from earlier experiments on C_{7}^{2-}.

View Article and Find Full Text PDF

Measurement of chemical species and temperature mapping in flames is essential to understanding the combustion process. Multiple cameras are conventionally employed for measurement in such scenarios making the experimental setup not only cost-intensive but also challenging. To circumvent this, structured illumination (SI)-based methods are reported for multispecies chemiluminescence (CL) imaging using a single camera.

View Article and Find Full Text PDF

Unburnt hydrocarbon flames produce soot, which is the second biggest contributor to global warming and harmful to human health. The state-of-the-art high-speed imaging techniques, developed to study non-repeatable turbulent flames, are limited to million-frames-per-second imaging rates, falling short in capturing the dynamics of critical species. Unfortunately, these techniques do not provide a complete picture of flame-laser interactions, important for understanding soot formation.

View Article and Find Full Text PDF

When light scatters off a sphere, it produces a rich Mie spectrum full of overlapping resonances. Single resonances can be explained with a quantum analogy and result in Fano profiles. However, the full spectrum is so complex that recognizable patterns have not been found, and is only understood by comparing to numerical simulations.

View Article and Find Full Text PDF
Article Synopsis
  • Negative ions play a crucial role in various scientific fields such as interstellar chemistry and anti-matter research, where their unique properties are influenced by electron-correlation effects.
  • Traditional methods for studying these ions face challenges due to their loosely bound nature and limited optical transitions, hindering high-resolution detection techniques.
  • A new method has been developed that accurately measures negative ion binding energies with significantly higher precision, utilizing laser manipulation and a cryogenic ion-beam storage ring, leading to a reported electron affinity of 1.461 112 972(87) eV for oxygen.
View Article and Find Full Text PDF

Femtosecond laser-induced optical breakdown in liquids results in filamentation, which involves the formation and collapse of bubbles. In the present work, we elucidate spatio-temporal evolution, interaction, and dynamics of the filamentation-induced bubbles in a liquid pool as a function of a broad spectrum of laser pulse energies (∼1 to 800 µJ), liquid media (water, ethanol, and glycerol), and the number of laser pulses. Filament attributes such as length and diameter have been demarcated and accurately measured by employing multiple laser pulses and were observed to have a logarithmic dependence on laser energy, irrespective of the medium.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers examined how HfF and WF molecular anions decay spontaneously and when exposed to different laser wavelengths in a specialized facility called DESIREE, observing these processes over long time scales thanks to very low temperatures and pressures.
  • The study found that both anions experience decay through electron detachment or fragmentation, with WF anions showing a significant increase in neutralization at a specific energy threshold of about 3.5 eV, while HfF did not exhibit any enhancement in neutrons produced, even at high energy levels.
  • This finding could aid in improving the detection of the rare isotope Hf in accelerator mass spectrometry by minimizing interference from stable isobar W, which is important for astrophysical studies on nucleosynthesis
View Article and Find Full Text PDF

In this paper, we present an apparatus for studies into the photodetachment process of atomic negative ions. State-selective detection of the residual atom following the initial photodetachment step is achieved by combining resonant laser excitation of the photo-detached atom with electric field ionization. The resonance ionization technique in combination with a co-linear ion-laser beam geometry gives an experimental apparatus that has both high selectivity and sensitivity.

View Article and Find Full Text PDF

More than 100 years ago, Robert Millikan demonstrated the quantization of the electron using charged, falling droplets, but the statistical analysis on many falling droplets did not allow a direct visualization of the quantization of charge. Instead of letting the droplets fall, we have used optical levitation to create a single droplet version of Millikan's experiment where the effects of a single electron removal can be observed by the naked eye and measured with a ruler. As we added charges to the levitated droplet, we observed that its equilibrium position jumped vertically in quantized steps.

View Article and Find Full Text PDF

Controlling the directionality of spin waves is a key ingredient in wave-based computing methods such as magnonics. In this Letter, we demonstrate this particular aspect by using an all-optical pointlike source of continuous spin waves based on frequency comb rapid demagnetization. The emitted spin waves contain a range of k vectors and by detuning the applied magnetic field slightly off the ferromagnetic resonance (FMR), we observe X-shaped caustic spin wave patterns at 70° propagation angles as predicted by theory.

View Article and Find Full Text PDF

Optical aberrations can greatly distort the image created by an optical element. Several aberrations can affect the image simultaneously and discerning or visualizing specific aberrations can be difficult. By making use of an optically levitated droplet as a light source, we have visualized the spherical aberration and coma of a lens.

View Article and Find Full Text PDF

Brillouin light scattering (BLS) microscopy is a well established and powerful technique to study acoustic and magnetic excitations in the frequency domain with sub-micron spatial resolution. Many other spectroscopic techniques have benefited from the introduction of femtosecond laser sources to optically pump and stimulate the sample under investigation. In BLS microscopy, the use of femtosecond lasers as the excitation source introduces several challenges, primarily since the measured frequency shift is small and the signal levels are weak due to the low duty cycle of typical femtosecond lasers.

View Article and Find Full Text PDF

One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance.

View Article and Find Full Text PDF

A scheme is presented for pulsing of a cesium sputter negative ion source by periodically switching on and off the high voltage driving the sputtering process. We demonstrate how the pulsed ion beam can be used in combination with a pulsed laser (6 ns pulse length) that has a 10 Hz repetition rate to study the photodetachment process, where a negative ion is neutralized due to the absorption of a photon. In such experiments, where the ion beam is used only for a small fraction of the time, we show that the pulsed mode operation can increase the lifetime of a cathode by two orders of magnitude as compared with DC operation.

View Article and Find Full Text PDF

We discovered that when a pair of small particles is optically levitated, the particles execute a "dance" whose motion resembles the orbits of balls being juggled. This motion lies in a plane perpendicular to the polarization of the incident light. We ascribe the dance to a mechanism by which the dominant force on each particle cyclically alternates between radiation pressure and gravity as each particle takes turns eclipsing the other.

View Article and Find Full Text PDF

The work presents an experiment that allows the study of many fundamental physical processes, such as photon pressure, diffraction of light or the motion of charged particles in electrical fields. In this experiment, a focused laser beam pointing upwards levitate liquid droplets. The droplets are levitated by the photon pressure of the focused laser beam which balances the gravitational force.

View Article and Find Full Text PDF

A new experimental technique for creating and imaging collisions of micron-sized droplets settling under gravity is presented. A pair of glycerol droplets is suspended in air by means of two optical traps. The droplet relative velocities are determined by the droplet sizes.

View Article and Find Full Text PDF

We have constructed a counterpropagating optical tweezers setup embedded in a Sagnac interferometer in order to increase the sensitivity of position tracking for particles in the geometrical optics regime. Enhanced position determination using a Sagnac interferometer has previously been described theoretically by Taylor et al. [Journal of Optics 13, 044014 (2011)] for Rayleigh-regime particles trapped in an antinode of a standing wave.

View Article and Find Full Text PDF

We use a novel electrostatic ion storage ring to measure the radiative lifetime of the upper level in the 3p^{5} ^{2}P_{1/2}^{o}→3p^{5} ^{2}P_{3/2}^{o} spontaneous radiative decay in ^{32}S^{-} to be 503±54  sec. This is by orders of magnitude the longest lifetime ever measured in a negatively charged ion. Cryogenic cooling of the storage ring gives a residual-gas pressure of a few times 10^{-14} mbar at 13 K and storage of 10 keV sulfur anions for more than an hour.

View Article and Find Full Text PDF

We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K.

View Article and Find Full Text PDF

New techniques for suppression of atomic isobars in negative ion beams are of great interest for accelerator mass spectrometry (AMS). Especially small and medium-sized facilities can significantly extend their measurement capabilities to new interesting isotopes with a technique independent of terminal voltage. In a new approach, the effect of continuous wave laser light directed towards the cathode surface in a cesium sputter ion source of the Middleton type was studied.

View Article and Find Full Text PDF

Multiphoton imaging based on two-photon excitation is making its way into the clinics, particularly for skin cancer diagnostics. It has been suggested that endogenously formed protoporphyrin IX (PpIX) induced by aminolevulinic acid or methylaminolevulinate can be applied to improve tumor contrast, in connection to imaging of tissue autofluorescence. However, previous reports are limited to cell studies and data from tissue are scarce.

View Article and Find Full Text PDF