Publications by authors named "Hansoul Kim"

Volumetric muscle loss (VML) presents a significant challenge in tissue engineering due to the irreparable nature of extensive muscle injuries. In this study, we propose a novel approach for VML treatment using a bioink composed of silk microfiber-reinforced silk fibroin (SF) hydrogel. The engineered scaffolds are predesigned to provide structural support and fiber alignment to promote tissue regeneration in situ.

View Article and Find Full Text PDF

In this paper, with the goal of addressing the high early-detection miss rate of colorectal cancer (CRC) polyps during a colonoscopy procedure, we propose the design and fabrication of a unique inflatable vision-based tactile sensing balloon (VTSB). The proposed soft VTSB can readily be integrated with the existing colonoscopes and provide a radiation-free, safe, and high-resolution textural mapping and morphology characterization of CRC polyps. The performance of the proposed VTSB has been thoroughly characterized and evaluated on four different types of additively manufactured CRC polyp phantoms with three different stiffness levels.

View Article and Find Full Text PDF

A highly stretchable and tissue-adhesive multifunctional sensor based on structurally engineered islets embedded in ultra-soft hydrogel is reported for monitoring of bladder activity in overactive bladder (OAB) induced rat and anesthetized pig. The use of hydrogel yielded a much lower sensor modulus (1 kPa) compared to that of the bladder (300 kPa), while the strong adhesiveness of the hydrogel (adhesive strength: 260.86 N/m) allowed firm attachment onto the bladder.

View Article and Find Full Text PDF

Background: Although various endoscopic surgery robots developed in previous studies are versatile and have high lesion accessibility, they have limitations in terms of reaching the target lesion through the curved path in the large intestine and providing a stable tasking environment for the operator.

Methods: An endoscopic surgery robot was developed for performing surgery in the large intestine. The robot was easily inserted into the target lesion in the curved colon through the mounted soft actuator and demonstrated high structural stiffness through the insertion of the sigmoidal auxiliary tendons.

View Article and Find Full Text PDF

The overtube of an endoscopic surgery robot is fixed when performing tasks, unlike those of commercial endoscopes, and this overtube should have high structural stiffness after reaching the target lesion so that sufficient tension can be applied to the lesion tissue with the surgical tool and there are fewer changes in the field of view of the endoscopic camera from this reaction force. Various methods have been proposed to reinforce the structural stiffnesses of hyper-redundant manipulators. However, the safety, rapid response, space efficiency, and cost-effectiveness of these methods should be considered for use in actual clinical environments, such as the gastrointestinal tract.

View Article and Find Full Text PDF

Background: The tendon-sheath mechanism provides flexibility but degrades the task performance of the flexible endoscopic robot because of the inherent backlash hysteresis problem. Previous studies have only focused on reducing backlash hysteresis. The goal of this study is to identify the backlash hysteresis criteria of surgical tool bending joints to maintain efficient surgical performance.

View Article and Find Full Text PDF