Publications by authors named "Hansmann Jan"

Article Synopsis
  • The FDA's decision to remove mandatory animal testing for drug approval signifies a move towards alternative research methods, with growing support from the European Parliament for animal-free practices.
  • In vitro tissue models are being embraced for regulatory assessments in line with the 3R principles, but barriers like standardization, availability, and cost still limit their use.
  • The Robotic Enabled Biological Automation (ReBiA) system is designed to automate laboratory processes, improving consistency and cost-effectiveness of in vitro models, as demonstrated by successful production of human tissue models that closely resemble native tissues.
View Article and Find Full Text PDF

Osteocytes perceive and process mechanical stimuli in the lacuno-canalicular network in bone. As a result, they secrete signaling molecules that mediate bone formation and resorption. To date, few three-dimensional (3D) models exist to study the response of mature osteocytes to biophysical stimuli that mimic fluid shear stress and substrate strain in a mineralized, biomimetic bone-like environment.

View Article and Find Full Text PDF

Bioprinting provides a powerful tool for regenerative medicine, as it allows tissue construction with a patient's specific geometry. However, tissue culture and maturation, commonly supported by dynamic bioreactors, are needed. We designed a workflow that creates an implant-specific bioreactor system, which is easily producible and customizable and supports cell cultivation and tissue maturation.

View Article and Find Full Text PDF

Bone is a dynamic environment where osteocytes, osteoblasts, and mesenchymal stem/progenitor cells perceive mechanical cues and regulate bone metabolism accordingly. In particular, interstitial fluid flow in bone and bone marrow serves as a primary biophysical stimulus, which regulates the growth and fate of the cellular components of bone. The processes of mechano-sensory and -transduction towards bone formation have been well studied mainly in vivo as well as in two-dimensional (2D) dynamic cell culture platforms, which elucidated mechanically induced osteogenesis starting with anabolic responses, such as production of nitrogen oxide and prostaglandins followed by the activation of canonical Wnt signaling, upon mechanosensation.

View Article and Find Full Text PDF

Bacterial infection is a crucial complication in implant restoration, in particular in permanent skin-penetrating implants. Therein, the resulting gap between transcutaneous implant and skin represents a permanent infection risk, limiting the field of application and the duration of application. To overcome this limitation, a tight physiological connection is required to achieve a biological and mechanical welding for a long-term stable closure including self-healing probabilities.

View Article and Find Full Text PDF

Robotic systems facilitate relatively simple human-robot interaction for non-robot experts, providing the flexibility to implement different processes. In this context, shorter process times, as well as an increased product and process quality could be achieved. Robots short time-consuming processes, take over ergonomically unfavorable tasks and work efficiently all the time.

View Article and Find Full Text PDF

The fate determination of bone marrow mesenchymal stem/stromal cells (BMSC) is tightly regulated by mechanical cues, including fluid shear stress. Knowledge of mechanobiology in 2D culture has allowed researchers in bone tissue engineering to develop 3D dynamic culture systems with the potential for clinical translation in which the fate and growth of BMSC are mechanically controlled. However, due to the complexity of 3D dynamic cell culture compared to the 2D counterpart, the mechanisms of cell regulation in the dynamic environment remain relatively undescribed.

View Article and Find Full Text PDF

In order to treat degenerative diseases, the importance of advanced therapy medicinal products has increased in recent years. The newly developed treatment strategies require a rethinking of the appropriate analytical methods. Current standards are missing the complete and sterile analysis of the product of interest to make the drug manufacturing effort worthwhile.

View Article and Find Full Text PDF

Oxidative stress and inflammation play a pivotal role in the development of cardiovascular diseases, an ever-growing worldwide problem. As a non-pharmacological approach, diet, especially a flavonoid-rich diet, showed promising results in the reduction of cardiovascular diseases and alleviation of their symptoms. In this study, in vitro systems based on human microvascular endothelial cells (hmvEC) and human umbilical cord endothelial cells (HUVEC) were established to determine the effect of Healthberry 865 (HB) and ten of its relating single anthocyanins on oxidative stress.

View Article and Find Full Text PDF

Compared to cell therapy, where cells are injected into a defect region, the treatment of heart infarction with cells seeded in a vascularized scaffold bears advantages, such as an immediate nutrient supply or a controllable and persistent localization of cells. For this purpose, decellularized native tissues are a preferable choice as they provide an in vivo-like microenvironment. However, the quality of such scaffolds strongly depends on the decellularization process.

View Article and Find Full Text PDF

Various perfusion bioreactor systems have been designed to improve cell culture with three-dimensional porous scaffolds, and there is some evidence that fluid force improves the osteogenic commitment of the progenitors. However, because of the unique design concept and operational configuration of each study, the experimental setups of perfusion bioreactor systems are not always compatible with other systems. To reconcile results from different systems, the thorough optimization and validation of experimental configuration are required in each system.

View Article and Find Full Text PDF

Objective: To evaluate the usefulness of a published clinical decision support tool to predict the likelihood of a retrievable inferior vena cava (IVC) filter being maintained as a permanent device.

Methods: This multicenter retrospective cohort study included 1498 consecutive patients (852 men and 646 women; median age, 60 years; range, 18-98 years) who underwent retrievable IVC filter insertion between January 2012 and December 2019. The indications for IVC filtration, baseline neurologic disease, history of venous thromboembolism (VTE), and underlying malignancy were recorded.

View Article and Find Full Text PDF

Purpose: To investigate the pooled safety and effectiveness of advanced retrieval techniques for inferior vena cava (IVC) filters compared with standard retrieval techniques through a systematic review of the literature and meta-analysis.

Materials And Methods: A systematic search of retrievable IVC filters between 1980 and 2020 was conducted. Studies were included if both standard and advanced retrieval techniques were utilized in the same cohort, retrieval success rates and adverse event rates were described for each technique, and advanced techniques were employed after the failure of standard techniques.

View Article and Find Full Text PDF

Electrochemical impedance spectroscopy (EIS) is a noninvasive, reliable, and efficient method to analyze the barrier integrity of in vitro tissue models. This well-established tool is used most widely to quantify the transendothelial/epithelial resistance (TEER) of Transwell-based models cultured under static conditions. However, dynamic culture in bioreactors can achieve advanced cell culture conditions that mimic a more tissue-specific environment and stimulation.

View Article and Find Full Text PDF

The extracellular matrix (ECM) of soft tissues in vivo has remarkable biological and structural properties. Thereby, the ECM provides mechanical stability while it still can be rearranged via cellular remodeling during tissue maturation or healing processes. However, modern synthetic alternatives fail to provide these key features among basic properties.

View Article and Find Full Text PDF

The limited availability of human donor organs suitable for transplantation has resulted in ever-increasing patient waiting lists globally. Xenotransplantation is considered a potential option, but is yet to reach clinical practice. Although remarkable progress has been made in overcoming immunological rejection, issues with functionality are still to be resolved.

View Article and Find Full Text PDF

The measurement of transepithelial electrical resistance (TEER) is a common technique to determine the barrier integrity of epithelial cell monolayers. However, it is remarkable that absolute TEER values of similar cell types cultured under comparable conditions show an immense heterogeneity. Based on previous observations, we hypothesized that the heterogeneity of absolute TEER measurements can not only be explained by maturation of junctional proteins but rather by dynamics in the absolute length of cell junctions within monolayers.

View Article and Find Full Text PDF

The incidence of cardiovascular and metabolic diseases has increased over the last decades and is an important cause of death worldwide. An upcoming ingredient on the nutraceutical market are anthocyanins, a flavonoid subgroup, abundant mostly in berries and fruits. Epidemiological studies have suggested an association between anthocyanin intake and improved cardiovascular risk, type 2 diabetes and myocardial infarct.

View Article and Find Full Text PDF

In bone tissue engineering, the design of in vitro models able to recreate both the chemical composition, the structural architecture, and the overall mechanical environment of the native tissue is still often neglected. In this study, we apply a bioreactor system where human bone-marrow hMSCs are seeded in human femoral head-derived decellularized bone scaffolds and subjected to dynamic culture, i.e.

View Article and Find Full Text PDF

The fatal determination of bone marrow mesenchymal stem/stromal cells (BMSC) is closely associated with mechano-environmental factors in addition to biochemical clues. The aim of this study was to induce osteogenesis in the absence of chemical stimuli using a custom-designed laminar flow bioreactor. BMSC were seeded onto synthetic microporous scaffolds and subjected to the subphysiological level of fluid flow for up to 21 days.

View Article and Find Full Text PDF

The foreign body reaction to neuronal electrode implants limits potential applications as well as the therapeutic period. Developments in the basic electrode design might improve the tissue compatibility and thereby reduce the foreign body reaction. In this work, the approach of embedding 3D carbon nanofiber electrodes in extracellular matrix (ECM) synthesized by human fibroblasts for a compatible connection to neuronal cells was investigated.

View Article and Find Full Text PDF