Publications by authors named "Hanseung Choi"

Evaluating the mandibular canal proximity is crucial for planning mandibular third molar extractions. Panoramic radiography is commonly used for radiological examinations before third molar extraction but has limitations in assessing the true contact relationship between the third molars and the mandibular canal. Therefore, the true relationship between the mandibular canal and molars can be determined only through additional cone-beam computed tomography (CBCT) imaging.

View Article and Find Full Text PDF

The evaluation of the maxillary sinus is very important in dental practice such as tooth extraction and implantation because of its proximity to the teeth, but it is not easy to evaluate because of the overlapping structures such as the maxilla and the zygoma on panoramic radiographs. When doom-shaped retention pseudocysts are observed in sinus on panoramic radiographs, they are often misdiagnosed as cysts or tumors, and additional computed tomography is performed, resulting in unnecessary radiation exposure and cost. The purpose of this study was to develop a deep learning model that automatically classifies retention pseudocysts in the maxillary sinuses on panoramic radiographs.

View Article and Find Full Text PDF

Legal age estimation of living individuals is a critically important issue, and radiomics is an emerging research field that extracts quantitative data from medical images. However, no reports have proposed age-related radiomics features of the condylar head or an age classification model using those features. This study aimed to introduce a radiomics approach for various classifications of legal age (18, 19, 20, and 21 years old) based on cone-beam computed tomography (CBCT) images of the mandibular condylar head, and to evaluate the usefulness of the radiomics features selected by machine learning models as imaging biomarkers.

View Article and Find Full Text PDF

This study aimed to develop deep learning models that automatically detect impacted mesiodens on periapical radiographs of primary and mixed dentition using the YOLOv3, RetinaNet, and EfficientDet-D3 algorithms and to compare their performance. Periapical radiographs of 600 pediatric patients (age range, 3-13 years) with mesiodens were used as a training and validation dataset. Deep learning models based on the YOLOv3, RetinaNet, and EfficientDet-D3 algorithms for detecting mesiodens were developed, and each model was trained 300 times using training (540 images) and validation datasets (60 images).

View Article and Find Full Text PDF

The detection of maxillary sinus wall is important in dental fields such as implant surgery, tooth extraction, and odontogenic disease diagnosis. The accurate segmentation of the maxillary sinus is required as a cornerstone for diagnosis and treatment planning. This study proposes a deep learning-based method for fully automatic segmentation of the maxillary sinus, including clear or hazy states, on cone-beam computed tomographic (CBCT) images.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: